| 
          
         Sains
            Malaysiana 41(8)(2012): 1011–1016
  
               Natural Dye-Sensitized Solar Cell Based on Nanocrystalline
            TiO2 
            
           (Sel Suria Terpeka
            Pewarna Semula Jadi Berasaskan Nanohablur TiO2)
  
           Khalil Ebrahim Jasim*
 Department
            of Physics, College of Science, University of Bahrain
  
 Po
            Box 32038, Kingdom of Bahrain
            
           
             
           Diserahkan: 25 Januari
            2010 / Diterima: 7 Jun 2011
  
 
             
           ABSTRACT
            
           During the last quarter of the twentieth century there have
            been intensive research activities looking for green sources of energy. The
            main aim of the green generators or converters of energy is to replace the
            conventional (fossil) energy sources, hence reducing further accumulation of
            the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell
              based on crystalline bulk, quantum well and quantum dots structure or amorphous
              and thin film structures provided a feasible solution. However, natural dye
              sensitized solar cells NDSSC are a promising class of photovoltaic cells with the
                capability of generating green energy at low production cost since no vacuum
                systems or expensive equipment are required in their fabrication. Also, natural
                dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules
                  exposed to light they become oxidized and transfer electrons to a nanostructured
                  layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside
                    the cell through ohmic contact to a load. In this paper we review the structure
                    and operation principles of the dye sensitized solar cell DSSC. We discuss
                      preparation procedures, optical and electrical characterization of the NDSSC using local dyes
                        extracted from Henna (Lawsonia inermis L.), pomegranate,
                          cherries and Bahraini raspberries (Rubus spp.). These natural
                            organic dyes are potential candidates to replace some of the man-made dyes used
                            as sensitizer in many commercialized photoelectrochemical cells. Factors
                            limiting the operation of the DSSC are discussed. NDSSCs are expected to be a
                              favored choice in the building-integrated photovoltaics (BIPV) due to their
                                robustness, therefore, requiring no special shielding from natural events such
                                as tree strikes or hails.
  
 
             
           Keywords:
            Building-integrated photovoltaics (BIPV); nanocrystalline layer;
            natural dye sensitize solar cell NDSSC; photoelectrochemical
            cell
  
 ABSTRAK
            
           Sejak suku abad yang lalu, aktiviti
            penyelidikan bagi mencari sumber tenaga hijau sangat giat dilakukan. Matlamat
              utama penjana atau penukar tenaga adalah untuk menukar sumber tenaga
              konvensional (fosil) dan mengurangkan pengumpulan gas rumah hijau (GHGs). Sel suria
                konvensional berasaskan bahan pukal hablur, telaga kuantum dan struktur bintik
                kuantum atau amorfus dan filem nipis daripada bahan silikon dan semikonduktor
                III-V menawarkan kemungkinan penyelesaian. Walau bagaimanapun, sel suria
              terpeka pewarna semula jadi (NDSSC) merupakan kumpulan sel fotovoltan dengan
                keupayaan penjanaan tenaga hijau pada kos yang lebih
                rendah disebabkan tiada sistem vakum atau kelengkapan mahal diperlukan untuk
                penghasilannya. Selain itu, sumber pewarna semula jadi sangat banyak dan ia adalah bahan yang selamat. Di dalam NDSSC, apabila molekul
                  pewarna terdedah kepada cahaya, ia akan teroksida dan memindahkan elektron ke
                  lapisan nanostruktur yang mempunyai jurang tenaga yang lebar seperti TiO2, melalui sentuhan ohmik
                    elektron yang terhasil dikeluarkan dari sel dan terus ke beban. Dalam kajian ini, kami mengkaji struktur dan prinsip operasi sebuah
                      sel suria terpeka pewarna DSSC. Kami membincangkan prosidur penyediaan, pencirian optik dan
                        elektrik sebuah NDSSC menggunakan pewarna
                        tempatan yang diekstrak daripada inai (Lawsonia
                          inermis L.), pomegranat, ceri and rasberi Bahrain (Rubus spp.). Pewarna
                            semula jadi ini merupakan calon yang berpotensi untuk menggantikan sebahagian
                            pewarna buatan manusia yang digunakan sebagai pemeka di dalam sel
                            fotoelektrokimia komersial. Faktor pengehad operasi DSSC juga dibincangkan.NDDSC dijangka menjadi
                              pilihan yang diminati untuk bangunan-terkamir fotovoltan (BIPV) disebabkan
                                kelasakkannya, justeru ia tidak memerlukan
                                perlindungan khusus daripada fenomena semula jadi seperti pukulan pokok dan
                                hujan batu.
  
 Kata kunci:
            Bangunan-terkamir fotovoltan; lapisan nanohablur; sel fotoelektrokimia; sel
            suria terpeka pewarna semulajadi
            
           RUJUKAN
            
           
             
           Amao, Y. & Komori,
            T. 2004. Bio-photovoltaic conversion device using chlorine-E6 derived from
              chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosensors
                Bioelectronics 19(8): 843-847.
  
 Cherepy, N.J.,
            Smestad, G.P., Gratzel, M., Zhang J.Z. 1997. Ultrafast electron
              injection: Implications for a photoelectrochemical cell utilizing an
              anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys.
                Chem. B 101: 9342-9351.
  
 Garcia, C.G., Polo,
            A.S. & Iha, N.Y. 2003. Fruit extracts and ruthenium polypyridinic dyes for
            sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem.
              Photbiol. A (Chem.) 160(1-2): 87-91. 
  
 Hao, S., Wu, J.,
            Huang, Y. & Lin J. 2006. Natural dyes as
              photosensitizers for dye-sensitized solar cell. Sol. Energy 80(2):
              209-214.
  
 Hara, K. & Arakawa, H. 2003. Dye-sensitized solar cells, in Handbook of Photovoltaic Science
            And Engineering, A. Luque and S. Hegedus. (ed.): Chapter 15, pp.
            663-700. NY: John Wiley & Sons Ltd.
  
           Hasselmann,
            G. & Meyer, G. 1999. Sensitization of nanocrystalline tio2 by re(i)
              polypyridyl compounds. J. Phys. Chem. 212: 39-44.
  
 Islam, A., Hara, K.,
            Singh, L.P., Katoh, R., Yanagida, M., Murata, S., Takahashi, Y., Sugihara, H.
  & Arakawa, H. 2000. Dual electron injection from
    charge-transfer excited states of TiO2-Anchored Ru(Ii)-4,4′-Dicarboxy-2,2′-Biquinoline
      Complex. Chem. Lett. 29: 490-491.
  
 Jasim, K.E. &
            Hassan, A.M. 2009. Nanocrystalline TiO2 based natural dye sensitised solar cells. Int.
              J. Nanomanufacturing 4: 242–247. 
  
 Jasim, K.E.,
            Al-Dallal, S. & Hassan, A.M. 2011. Natural dye-sensitised photovoltaic
            cells based on nanoporous TiO2. Int. J. Nanoparticles. In Press.
  
 Kalyanasundaram, K.
  & Gratzel, M. 1998. Applications of functionalized transition
    metal complexes in photonic and optoelectronic devices. Coordination Chem.
      Rev. 77: 347-414.
  
 Kopidakis, N.,
            Benkstien, K.D., Van De Lagemaat, J. & Frank, A.J. 2003. Transport-limited
              recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J.
                Phys. Chem. B 107: 11307.
  
 Kruger, J., Plass, R.,
            M. Gratzel, M., Cameron, P.J. & Peter, L.M. 2003. Charge transport and
              back reaction in solid-state dye-sensitized solar cells: Astudy using
              intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys.
                Chem. B 107: 7536. 
  
 Kumara, G.R.A.,
            Kanebo, S., Okuya, M., Onwaona-Agyeman, B., Konno, A. & Tennakone, K. 2006.
            Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90: 1220-1226.
  
 Law, M., Greene, L.E.,
            Johnson, J.C., Saykally, R. & Yang, P. D. 2005. Nanowire
              dye-sensitized solar cells. Nature Materials 4: 455-459. 
  
 Matsumoto, M., Wada,
            Y., T. Kitamura, T., Shigaki, K., Inoue, T., Ikeda, M. & Yanagida, S.,
            Bull. 2001. Fabrication of solid-state dye-sensitized TiO2 solar cell using
              polymer electrolyte. Chem. Soc. Japan 74: 387-393.
  
 Nazerruddin, M.K, Kay,
            A., Ridicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N.
  & Gratzel, M. 1993. Conversion of light to electricity by
    cis-x2 bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(ii)
      charge-transfer sensitizers (x = cl-, br-, i-, cn-, and scn-) on
      nanocrystalline titanium dioxide electrodes. J. Amer. Chem. Soc. 115:
      6382-6390.
  
 Noack, V., Weller, H.
  & Eychmuller, A. 2002. Electron transport in particulate ZnO
    electrodes: Asimple approach. J. Phys. Chem. B 106: 8514-8523.
  
 O’regan B, &
            Gratzel, M. 1991. A low cost, high-efficiency solar cell based on
            dye-sensitized colloidal TiO2 films. Nature 353: 737-739.
  
 Polo, A.S. & Iha,
            N.Y. 2006. Blue sensitizers for solar cells: natural dyes from calafate and
            jaboticaba. Sol. Enrgy Mater. Sol. Cells 90: 1936-1944.
  
 Smestad, G.P. 1998.
            Education and solar conversion: demonstrating electron transfer. Sol. Energy Mater. Sol. Cells 55: 157-178.
  
 Stathatos, E., Lianos,
            P., A.S. Vuk, A.S. & B. Orel, B. 2004. Optimization of a quasi-solid-state
            dye-sensitized photoelectrochemical solar cell employing a ureasil/ sulfolane gel electrolyte. Adv. Funct. Mater. 14: 45-48.
  
 Tennakone, K., Kumara,
            G., Kottegota, I. & Wijayantha, K. 1997. The photostability of
              dye-sensitized solid state photovoltaic cells: factors determining the
              stability of the pigment in a nanoporous n-/cyanidin/p-cui cel. Semicond.
                Sci. Technol. 12: 128-132.
  
 Tennakone, K., Perera,
            V.P.S., Kottegoda, I.R.M. & Kumara, G. 1999. Dye-sensitized solid state photovoltaic cell based on composite zinc
            oxide/tin (iv) oxide films. J. Phys. D - Applied Phys. 32(4): 372-379.
  
 Xiang, J.H., Zhu,
            P.X., Masuda, Y., Okuya, M., Kaneko, S. & Koumoto, K. 2006. Flexible solar-cell from zinc oxide nanocrystalline sheets
              self-assembled by an in-situ electrodeposition process, J. Nanosci.
                Nanotechnol. 6: 1797-1801.
  
 Yanagida, S. 2006. Recent research progress of dye-sensitized solar cells in Japan. C.R. Chemie 9: 597-604.
            
           Yanagida, S.,
            Senadeera, G.K.R., Nakamura, K., Kitamura, T. & Wada, Y. 2004. Polythiophene-sensitized
              TiO2 solar cells. J. Photohem. Photbiol.
                A 166: 75-80.
  
 Yang, M., Thompson, D.
  & Meyer, G. 2000. Dual sensitization pathways of TiO2 by Na2[Fe(Bpy)(Cn)4]. Inorg. Chem.
    39: 3738-3739.
  
 
             
           
             
           *Pengarang surat-menyurat; email: khalilej@gmail.com 
            
           
             
            
             |