Sains
Malaysiana 41(8)(2012): 1023–1028
Effect of TMAH Etching Duration on
the Formation of Silicon Nanowire
Transistor Patterned
by AFM Nanolithography
(Kesan
Tempoh Punaran TMAH ke
atas Penghasilan Transistor Nanodawai Silikon
Tercorak
Menggunakan Nanolitografi Mikroskop Daya Atom)
Sabar D. Hutagalung*
& Kam C. Lew
School of Materials and Mineral
Resources Engineering, Engineering Campus
Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
Diserahkan: 25 Januari 2010 / Diterima:
19 September 2011
ABSTRACT
Atomic force microscopy (AFM) lithography was applied to produce
nanoscale pattern for silicon nanowire transistor fabrication. This technique
takes advantage of imaging facility of AFM and the ability of probe movement
controlling over the sample surface to create nanopatterns. A conductive AFM tip was used to grow
the silicon oxide nanopatterns on silicon on insulator (SOI) wafer. The applied
tip-sample voltage and writing speed were well controlled in order to form
pre-designed silicon oxide nanowire transistor structures. The effect of tetra
methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nanowire
transistor structure has been investigated. A completed silicon nanowire
transistor was obtained by removing the oxide layer via hydrofluoric acid
etching process. The fabricated silicon nanowire transistor consists of a
silicon nanowire that acts as a channel with source and drain pads. A lateral
gate pad with a nanowire head was fabricated very close to the channel in the
formation of transistor structures.
Keywords: Etching duration; nanolotography AFM; silicon nanowire; TMAH; transistor
ABSTRAK
Litografi mikroskop daya atom (AFM) telah diguna untuk menghasilkan
corak skala nano untuk fabrikasi transistor nanowayar silikon. Teknik
ini menggunakan kemudahan pengimejan AFM dan
keupayaan mengawal pergerakan kuar di atas permukaan sampel untuk mewujudkan
nanocorak. Hujung AFM yang konduktif telah digunakan untuk menghasilkan wafer
nanocorak oksida silikon pada silikon di atas penebat (SOI). Voltan
pada hujung sampel yang dikenakan dan kelajuan tulisan dikawal dengan baik
untuk menghasilkan strukutur pra-bentuk transistor nanowayar silikon oksida. Kesan tempoh punaran tetra metil ammonium hidroksida (TMAH) terhadap oksida yang dilindungi struktur
transistor nanowayar silikon telah dikaji. Transistor nanowayar silikon
telah diperoleh dengan mengeluarkan lapisan oksida melalui proses punaran asid
hidrofluorik. Transistor nanowayar silikon terdiri daripada nanowayar silikon
yang bertindak sebagai saluran dengan pad sumber dan salir. Pad get sisi dengan
kepala nanowayar telah direka bentuk berhampiran dengan saluran dalam
pembentukan struktur transistor.
Kata kunci: Nanowayar
silikon; nanolitografi AFM; tempoh punaran; TMAH; transistor
RUJUKAN
Cervenka, J., Kalousek, R., Bartosik,
M., Skoda, D., Tomanec, O. & Sikola, T. 2006. Fabrication of nanostructures on Si(100)
and GaAs(100) by local anodic oxidation. Applied Surface Science 253:
2373-2378.
Chien, F.S.S., Hsieh, W.F., Gwo, S., Vladar, A.E. &
Dagata, J.A. 2002. Silicon nanostructures fabricated by scanning probe
oxidation and tetra-methyl ammonium hydroxide etching. Journal of Applied
Physics 91: 12-16.
Choi, S.H., Jeong, K.J., Choi, J.S., Cho, T.Y. & Chun,
H.G. 1998. A study on the removal of silicon native oxide for ULSI devices A
study on the removal of silicon native oxide for ULSI devices. Journal of
Korea Physical Society 33: S99-S103.
Dalla Betta, G.F., Ronchin, S., Zoboli,
A. & Zorzi, N. 2008. High-performance PIN
photodiodes on TMAH thinned silicon wafers. Microelectronics Journal 39:
1485-1490.
Fang, T.H. 2004. Mechanisms of nanooxidation of Si(100) from atomic force microscopy. Microelectronics
Journal 35: 701-707.
Fu, E.S., Wang, X. & Williams, E.D. 1999.
Characterization of structures fabricated by atomic force microscope
lithography. Surface Science 438: 58-67.
Giesbers, A.J.M., Zeitler, U., Neubeck, S., Freitag, F.,
Novoselov, K.S. & Maan, J.C. 2008. Nanolithography and manipulation of
graphene using an atomic force microscope. Solid State Communications 147:
366-369.
Held, R., Heinzel, T., Studerus, P. & Ensslin, K. 1998.
Nanolithography by local anodic oxidation of metal films using an atomic force
microscope. Physica E 2: 748- 752.
Hu, X. & Hu, X. 2005. Analysis of the
process of anodization with AFM. Ultramicroscopy 105: 57-61.
Hutagalung, S.D., Darsono, T., Yaacob,
K.A. & Ahmad, Z.A. 2007. Effects
of tip voltage and writing speed on the formation of silicon oxide nanodots
patterned by scanning probe lithography. Journal of Scanning Probe
Microscopy 2: 28-31.
Kuramochi, H., Ando, K. & Yokoyama, H. 2003. Effect of
humidity on nano-oxidation of p-Si(001) surface. Surface
Science 542: 56-63.
Lazzarino, M., Mori, G., Sorba, L.,
Ercolani, D., Biasiol, G., Heun, S. & Locatelli, A. 2006. Chemistry and formation process of Ga(Al)As
oxide during local anodic oxidation nanolithography. Surface Scicence 600:
3739-3743.
Lee, S., Kim, J., Shin, W.S., Lee,
H.J., Koo, S. & Lee, H. 2004. Fabrication of nanostructures using scanning probe microscope lithography. Materials Science and Engineering C 24: 3-9.
Lee, S.K., Lee, S.Y., Rogdakis, K.,
Jang, C.O., Kim, D.J., Bano, E. & Zekentes, K. 2009. Si nanowire p-FET with asymmetric
source-drain I - V characteristics. Solid State Communications 149:
461-463.
Lew, K.C. & Hutagalung, S.D. 2010. Silicon nanowire
transistor fabricated by AFM nanolithography followed by wet chemical etching
process. International Journal of Nanoscience 9: 289-293.
Luo, G., Xie, G., Zhang, Y., Zhang, G.,
Zhang, Y., Carlberg, P., Zhu, T. & Liu, Z. 2006. Scanning probe lithography for nanoimprinting mould
fabrication. Nanotechnology 17: 3018-3022.
Salem, B., Dhalluin, F., Abed, H., Baron, T., Gentile, P.,
Pauc, N. & Ferret, P. 2009. Self-connected horizontal silicon nanowire
field effect transistor. Solid State Communications 149: 799-801.
Suk, S.D., Yeo, K.H., Cho, K.H., Li, M., Yeoh, Y.Y., Lee,
S.Y., Kim, S.M., Yoon, E.J., Kim, M.S., Oh, C.W., Kim, S.H., Kim, D.W. &
Park, D. 2008. High-performance twin silicon nanowire MOSFET (TSNWFET) on bulk
Si wafer. IEEE Transaction on Nanotechnology 7: 181-184.
Xie, X.N., Chung, H.J., Sow, C.H. & Wee, A.T.S. 2006.
Nanoscale materials patterning and engineering by atomic force microscopy
nanolithography. Material Science and Engineering R 54: 1-48.
Xuefeng, D. 2005. Microfabrication using bulk wet etching
with TMAH, M.S. Thesis, Department of Physics, McGill
University (unpublished)
Yoon, C., Kang, J., Yeom, D., Jeong, D.Y. & Kim, S.
2008. Comparison of electrical characteristics of back- and
top-gate Si nanowire field-effect transistors. Solid State
Communications 148: 293-296.
*Pengarang surat-menyurat; email: mrsabar@eng.usm.my
|