|  Sains Malaysiana 41(8)(2012): 939–947
          
             Supervised and Unsupervised Artificial Neural Networks for
            Analysis of 
              
 Diatom Abundance in Tropical Putrajaya Lake, Malaysia
            
           (Rangkaian Neural Buatan Diselia dan Tanpa Penyeliaan untuk
            Analisis Kelimpahan 
  
 Diatom di Tasik Tropika Putrajaya, Malaysia)
            
           
             
           M. Sorayya & S. Aishah
              
           Institute of Biological
            Sciences (ISB), University of Malaya, 50603 Kuala Lumpur, Malaysia
            
           
             
           B. Mohd. Sapiyan*
            
           Faculty of Science Computer
            and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
            
           
             
           Diserahkan: 29 Jun 2011 / Diterima:
            31 Januari 2012
            
           
             
           ABSTRACT
            
           Five years of data from
            2001 until 2006 of warm unstratified shallow, oligotrophic to mesothropic
            tropical Putrajaya Lake, Malaysia were used to study pattern discovery and
            forecasting of the diatom abundance using supervised and unsupervised
            artificial neural networks. Recurrent artificial neural network (RANN) was used for the supervised
              artificial neural network and Kohonen Self Organizing Feature Maps (SOM) was used for unsupervised
                artificial neural network. RANN was applied for forecasting of diatom abundance. The RANN performance was measured
                  in terms of root mean square error (RMSE) and the value reported was 29.12 cell/mL. Classification
                    and clustering by SOM and sensitivity analysis from the RANN were used to reveal the
                      relationship among water temperature, pH, nitrate nitrogen (NO3-N) concentration, chemical
                        oxygen demand (COD) concentration and diatom abundance. The results indicated
                          that the combination of supervised and unsupervised artificial neural network
                          is important not only for forecasting algae abundance but also in reasoning and
                          understanding ecological relationships. This in return will assist in better
                          management of lake water quality.
  
 
             
           Keywords:  Diatom; forecasting; recurrent
            artificial neural network; self organizing maps
            
           
             
           ABSTRAK
            
           Data selama lima tahun
            dari 2001 hingga 2006 bagi tasik tropika yang cetek dan panas, berstatus
            oligotrof ke mesotropi iaitu Tasik Putrajaya, Malaysia telah digunakan untuk
            mengkaji penemuan corak dan ramalan kuantiti diatom menggunakan rangkaian
            neural buatan yang diselia dan tidak diselia. Rangkaian
              neural buatan berulang (RANN)
              telah digunakan untuk rangkaian neural buatan diselia dan peta atur sendiri
              Kohonen (SOM) telah
              digunakan untuk rangkaian neural buatan tanpa pengawasan.RANN telah digunakan untuk
                ramalan kuantiti diatom. Prestasi RANN diukur
                  daripada ralat min punca kuasa dua (RMSE)
                  dan nilai yang dilaporkan adalah 29.12 sel/mL. Pengelasan dan kelompok
                  oleh SOM dan
                    analisis kepekaan daripada RANN digunakan untuk mendedahkan hubungan antara suhu air, pH,
                      kepekatan nitrogen nitrat (NO3-N), keperluan oksigen kimia (COD) dan kuantiti diatom. Keputusan
                        menunjukkan bahawa gabungan rangkaian diselia dan tidak diselia neural buatan
                        adalah penting bukan sahaja untuk ramalan pertumbuhan alga tetapi juga dalam
                        analisis dan pemahaman hubungan ekologi. Ini akan membantu dalam pengurusan yang lebih baik bagi kualiti air tasik.
                        
 
             
           Kata kunci: Diatom; peta susun sendiri; ramalan; rangkaian
            neural buatan berulang
            
           RUJUKAN
            
           APHA. 1995. Standard Methods for the Examination of Water
            and Waste Water. 19th Ed.
              Washington, D.C: American Public Health Association. 
  
 Bowden, G.J., Dandy, G.C. & Maier, H.R. 2006. An evaluation of methods for the selection of inputs for an
            artificial neural network based river model. Ecological Informatics Recknagel,
            F. (ed.) 2nd ed. Berlin: Springer-Verlag. pp. 275-292.
  
 Carrillo, P., Reche, I., Sánchez-Castillo, P. &
            Cruz-Pizarro, L. 1995. Direct and indirect effects of grazing on the Phytoplankton
              seasonal succession in an oligotrophic lake. Journal of Plankton
                Research 17: 1363-1379.
  
 Chon, T.S., Park, Y.S., Moon, K.H. & Cha, E.Y. 1996. Patternizing communities by using an artificial neural
            network. Ecological Modelling 90: 67-78.
  
 Colasanti, R.L. 1991. Discussions of the
            possible use of neural network algorithms in ecologicalmodelling. Binary 3: 13-15.
  
 Cybenko, G. 1989. Approximations by
            superpositions of sigmoidal functions. Mathematics of Control Signals
              and Systems 2: 303-314.
  
 Darley, W.M. 1982. Alga Biology: A Physiological Approach.
            Oxford London: Blackwell Scientific Publication.
  
 Edwards, M. & Morse, D.R. 1995. The
            potential for computer-aided identification in biodiversity research. Trends
              in Ecology and Evoluation 10: 153-158.
  
 Elfithri, R., Toriman, M.E., Mokhtar, M.B. & Juahir, H.
            2011. Perspectives and initiatives
              on integrated river basin management in Malaysia: A review. The Social
                Sciences 6(2): 169-176.
  
 Foody, G.M. 1999. Application of the self-organizing feature
            map neural network in community data analysis. Ecological Modelling 120:
            97-107.
  
 Gasim, M.B., Toriman, M.E., Rahim, S.A., Islam, M.S., Chek,
            T.C. & Juahir, H. 2006. Hydrology and water quality assessment of tasik
            chini’s feeder rivers, Pahang Malaysia Geografia 3: 1-16.
  
 Gray, N.F. 2010. Water Technology, An
            Introduction For Environmental Scientists and Engineers (3rd ed.). Oxford: Elseiver: 747. 
  
 Gurbuz, H., Kivrak, E., Soyupak, S. & Yerli, S.V. 2003. Predicting dominant phytoplankton quantities in reservoir by
            using neural networks. Hydrobiologia 504: 133-141.
  
 Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K. & Recknagel, F.
            2001. Prediction
              and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means
              of a recurrent artificialneural network. Ecological Modelling 146:
              115-129.
  
 Kingston, J.C. 1982. Association and distribution of common
            diatoms in surface samples from Northern Minnesota peatlands. Nova Hedwigia 73:
            333-346. 
  
 Kohonen, T. 1989. Self-Organization and Associative Memory (3rd ed.) Berlin: Springer-Verlag.
            
           Kutty, A.A., Ismail, A. & Fong, C.S. 2001. A preliminary
            Study of Phytoplankton at Lake Chini Pahang, Pakistan Journal of Biological
              Sciences 4(3): 309-313. 
  
 Leclercq L. 1988. Utilization de trios indices, chimique,
            diatomique et biocénotique, pour l’évaluation de la qualité de l’eau de la
            Joncquiere, riviére calcaire polluée par le village de Doische (Belgique, Prov.
            Namur). Mém. Soc. Roy. Bot. Belg. 10: 26-34. 
  
 Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J.
  & Aulagnier, S. 1996. Application of neural networks to
    modelling nonlinear relationships in ecology. Ecological Modelling 90:
            39-52.
  
 Matlab 2006. The Math Works Inc. Matlab (Version 6.5.1).
            
           Maier, H.R., Dandy, G.C. & Burch, M.D. 1998. Use of artificial neural networks for modeling cyanobacteria
            Anabaena spp. in the River Murray, South Australia. Ecological Modelling 105:
            257-272. 
  
 Maindonald, J.H. & Braun, W.J. 2007. Data Analysis and
            Graphics Using R . An Example-Based
              Approach. 2nd ed. Cambridge:
            Cambridge University Press. 
  
 Maznah, W. 2010. Perspectives on the use of algae as biological indicators for
            monitoring and protecting aquatic environments, with special reference to
            Malaysian freshwater ecosystems. Tropical Life Sciences Research 21(2):
            51-67. 
  
 Maznah, W. & Mansor, M. 1999. Benthic diatoms in the Pinang River
            (Malaysia) and its tributaries with emphasis on species diversity and water
            quality. International Journal on Algae 1(4): 103-118. 
  
 Najah, A., Elshafie, A., Karim, O.A. & Jaffar, O. 2009. Prediction of Johor river water quality
            parameters using artificial neural networks. European Journal of
              Scientific Research 28(3): 422-435. 
  
 Nather Khan, I.S.A. 1985. Studies on the
            water quality and periphyton community in Linggi River Basin, Malaysia. PhD Diss., University of Malaya (unpublished)
            
 Nather Khan, I.S.A. 1990. Assessment of water pollution using
            diatom community structure and species distribution: A case study in a tropical
            river basin. Internationae Revue der gesamten Hydrobiologie and Hydrographie 75(3): 317-338.
  
 Nather Khan, I.S.A. 1991. Effect of urban
            and industrial wastes on species diversity of the diatom community in a
            tropical river, Malaysia. Hydrobiologia 224: 175-184.
  
 Patrick, R. 1994. What are the requirements for an effective
            biomonitor? In: Biological Monitoring of Aquatic Systems. Loeb, Stanford
            L and Anne Spacie, eds. pp. 23-29.
  
 Pineda,
            F. 1987. Generalization of backpropagation to recurrent
              neural networks. Physical Review Letters 19(59): 2229-2232.
  
 Principe,
            J.C., Euliano, N.R. & Lefebvre, W.C. 1999. Neural and Adaptive Systems:
              Fundamentals Through Simulations. N.Y: John Wiley & Sons.
  
 Putrajaya Corporation. 1998. Putrajaya
            Lake Management Guide. Putrajaya Corporation, Selangor Darul Ehsan.
  
           Recknagel, F., Welk,
            A., Kim, B. & Takamura, N. 2006. Artificial Neural Network Approach to
              Unravel and Forecast Algal Population Dynamics of Two Lakes Different in
              Morphometry and Eutrophication. In: Recknagel, F. Ecological
                Informatics (2nd ed.) NY: Springer-Verlag.
  
 Recknagel, F., Kim, B.
  & Welk, A. 2005. Unravelling and prediction of ecosystem behaviours of Lake Soyang
    (South Korea) in response to changing seasons and management by means of
    artificial neural networks. Verh. Internat. Verein. Limnol 29(3):
    1497-1502.
  
 Recknagel, F. 2001. Applications
            of machine learning to ecological modelling. Ecological Modelling 146:
            303-310.
  
           Reynolds, C.S. 1984. The
            Ecology of Freshwater Phytoplankton. Cambridge: Cambridge
            University Press.
  
           Round, F.E. 1984. The
            Ecology of Algae. Cambridge : Cambridge University Press. pp 653.
  
           Salleh, A. 1996. Panduan Mengenali
            Alga Air Tawar. Kuala Lumpur: Dewan Bahasa dan Pustaka.
  
           Sawyer, C.N., McCarty,
            P.L. & Parkin, G.F. 1994. Chemistry for Fnvironmental Engineering. New
              York: McGraw-Hill.
  
 Schultz, R., Wieland
  & Lutze, G. 2000. Neural networks in argroecological modelling—stylish application or
    helpful tool?. Computers and Electronics in
      Agriculture 29: 73-97.
  
 Sommer, U. 1989. Nutrient status and nutrient
            competition of phytoplankton in a shallow, hypertrophic lake. Limnology
              and Oceanography 34(7): 1162-1173.
  
           Talib, A., Abu Hasan,
            Y. & Abdul Rahman, N.N. 2009. Predicting biochemical oxygen demand as indicator of river pollution using
              artificial neural networks. 18th World IMACS / MODSIM Congress, Cairns,
              Australia 13-17 July 2009
  
 Thomann, R.V. & Mueller, J.A. 1987. Principles
            of Surface Water Quality Modeling and Control New York: Harrper and Row.
  
           Vanni, M.J. & Temte, J. 1990.
            Seasonal patterns of grazing and nutrient limitation of phytoplankton in a
            eutrophic lake. Limnology and Oceanography 35: 697-709.
  
           WHO. 1987. WHO, UNEP/WHO/UNESCO/WMO
            Project on Global Environmental Monitoring. GEM Water
              Operational Guide.
  
           Werner, D. 1977. The
            Biology of Diatoms. Bot. Monogr., V. 13.
            Berkeley and New York: University of California Press,
  
           Zhang, G.P., Patuwo, B.E. & Hu, M.Y.
            1998. Forecasting with artificial neural networks: The state of the art. International
              Journal of Forecasting 14: 35-62.
  
           
             
           
             
           *Pengarang surat-menyurat; email: pian@um.edu.my
            
           
             
            
  
   
   |