Sains Malaysiana 41(8)(2012): 939–947
Supervised and Unsupervised Artificial Neural Networks for
Analysis of
Diatom Abundance in Tropical Putrajaya Lake, Malaysia
(Rangkaian Neural Buatan Diselia dan Tanpa Penyeliaan untuk
Analisis Kelimpahan
Diatom di Tasik Tropika Putrajaya, Malaysia)
M. Sorayya & S. Aishah
Institute of Biological
Sciences (ISB), University of Malaya, 50603 Kuala Lumpur, Malaysia
B. Mohd. Sapiyan*
Faculty of Science Computer
and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
Diserahkan: 29 Jun 2011 / Diterima:
31 Januari 2012
ABSTRACT
Five years of data from
2001 until 2006 of warm unstratified shallow, oligotrophic to mesothropic
tropical Putrajaya Lake, Malaysia were used to study pattern discovery and
forecasting of the diatom abundance using supervised and unsupervised
artificial neural networks. Recurrent artificial neural network (RANN) was used for the supervised
artificial neural network and Kohonen Self Organizing Feature Maps (SOM) was used for unsupervised
artificial neural network. RANN was applied for forecasting of diatom abundance. The RANN performance was measured
in terms of root mean square error (RMSE) and the value reported was 29.12 cell/mL. Classification
and clustering by SOM and sensitivity analysis from the RANN were used to reveal the
relationship among water temperature, pH, nitrate nitrogen (NO3-N) concentration, chemical
oxygen demand (COD) concentration and diatom abundance. The results indicated
that the combination of supervised and unsupervised artificial neural network
is important not only for forecasting algae abundance but also in reasoning and
understanding ecological relationships. This in return will assist in better
management of lake water quality.
Keywords: Diatom; forecasting; recurrent
artificial neural network; self organizing maps
ABSTRAK
Data selama lima tahun
dari 2001 hingga 2006 bagi tasik tropika yang cetek dan panas, berstatus
oligotrof ke mesotropi iaitu Tasik Putrajaya, Malaysia telah digunakan untuk
mengkaji penemuan corak dan ramalan kuantiti diatom menggunakan rangkaian
neural buatan yang diselia dan tidak diselia. Rangkaian
neural buatan berulang (RANN)
telah digunakan untuk rangkaian neural buatan diselia dan peta atur sendiri
Kohonen (SOM) telah
digunakan untuk rangkaian neural buatan tanpa pengawasan.RANN telah digunakan untuk
ramalan kuantiti diatom. Prestasi RANN diukur
daripada ralat min punca kuasa dua (RMSE)
dan nilai yang dilaporkan adalah 29.12 sel/mL. Pengelasan dan kelompok
oleh SOM dan
analisis kepekaan daripada RANN digunakan untuk mendedahkan hubungan antara suhu air, pH,
kepekatan nitrogen nitrat (NO3-N), keperluan oksigen kimia (COD) dan kuantiti diatom. Keputusan
menunjukkan bahawa gabungan rangkaian diselia dan tidak diselia neural buatan
adalah penting bukan sahaja untuk ramalan pertumbuhan alga tetapi juga dalam
analisis dan pemahaman hubungan ekologi. Ini akan membantu dalam pengurusan yang lebih baik bagi kualiti air tasik.
Kata kunci: Diatom; peta susun sendiri; ramalan; rangkaian
neural buatan berulang
RUJUKAN
APHA. 1995. Standard Methods for the Examination of Water
and Waste Water. 19th Ed.
Washington, D.C: American Public Health Association.
Bowden, G.J., Dandy, G.C. & Maier, H.R. 2006. An evaluation of methods for the selection of inputs for an
artificial neural network based river model. Ecological Informatics Recknagel,
F. (ed.) 2nd ed. Berlin: Springer-Verlag. pp. 275-292.
Carrillo, P., Reche, I., Sánchez-Castillo, P. &
Cruz-Pizarro, L. 1995. Direct and indirect effects of grazing on the Phytoplankton
seasonal succession in an oligotrophic lake. Journal of Plankton
Research 17: 1363-1379.
Chon, T.S., Park, Y.S., Moon, K.H. & Cha, E.Y. 1996. Patternizing communities by using an artificial neural
network. Ecological Modelling 90: 67-78.
Colasanti, R.L. 1991. Discussions of the
possible use of neural network algorithms in ecologicalmodelling. Binary 3: 13-15.
Cybenko, G. 1989. Approximations by
superpositions of sigmoidal functions. Mathematics of Control Signals
and Systems 2: 303-314.
Darley, W.M. 1982. Alga Biology: A Physiological Approach.
Oxford London: Blackwell Scientific Publication.
Edwards, M. & Morse, D.R. 1995. The
potential for computer-aided identification in biodiversity research. Trends
in Ecology and Evoluation 10: 153-158.
Elfithri, R., Toriman, M.E., Mokhtar, M.B. & Juahir, H.
2011. Perspectives and initiatives
on integrated river basin management in Malaysia: A review. The Social
Sciences 6(2): 169-176.
Foody, G.M. 1999. Application of the self-organizing feature
map neural network in community data analysis. Ecological Modelling 120:
97-107.
Gasim, M.B., Toriman, M.E., Rahim, S.A., Islam, M.S., Chek,
T.C. & Juahir, H. 2006. Hydrology and water quality assessment of tasik
chini’s feeder rivers, Pahang Malaysia Geografia 3: 1-16.
Gray, N.F. 2010. Water Technology, An
Introduction For Environmental Scientists and Engineers (3rd ed.). Oxford: Elseiver: 747.
Gurbuz, H., Kivrak, E., Soyupak, S. & Yerli, S.V. 2003. Predicting dominant phytoplankton quantities in reservoir by
using neural networks. Hydrobiologia 504: 133-141.
Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K. & Recknagel, F.
2001. Prediction
and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means
of a recurrent artificialneural network. Ecological Modelling 146:
115-129.
Kingston, J.C. 1982. Association and distribution of common
diatoms in surface samples from Northern Minnesota peatlands. Nova Hedwigia 73:
333-346.
Kohonen, T. 1989. Self-Organization and Associative Memory (3rd ed.) Berlin: Springer-Verlag.
Kutty, A.A., Ismail, A. & Fong, C.S. 2001. A preliminary
Study of Phytoplankton at Lake Chini Pahang, Pakistan Journal of Biological
Sciences 4(3): 309-313.
Leclercq L. 1988. Utilization de trios indices, chimique,
diatomique et biocénotique, pour l’évaluation de la qualité de l’eau de la
Joncquiere, riviére calcaire polluée par le village de Doische (Belgique, Prov.
Namur). Mém. Soc. Roy. Bot. Belg. 10: 26-34.
Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J.
& Aulagnier, S. 1996. Application of neural networks to
modelling nonlinear relationships in ecology. Ecological Modelling 90:
39-52.
Matlab 2006. The Math Works Inc. Matlab (Version 6.5.1).
Maier, H.R., Dandy, G.C. & Burch, M.D. 1998. Use of artificial neural networks for modeling cyanobacteria
Anabaena spp. in the River Murray, South Australia. Ecological Modelling 105:
257-272.
Maindonald, J.H. & Braun, W.J. 2007. Data Analysis and
Graphics Using R . An Example-Based
Approach. 2nd ed. Cambridge:
Cambridge University Press.
Maznah, W. 2010. Perspectives on the use of algae as biological indicators for
monitoring and protecting aquatic environments, with special reference to
Malaysian freshwater ecosystems. Tropical Life Sciences Research 21(2):
51-67.
Maznah, W. & Mansor, M. 1999. Benthic diatoms in the Pinang River
(Malaysia) and its tributaries with emphasis on species diversity and water
quality. International Journal on Algae 1(4): 103-118.
Najah, A., Elshafie, A., Karim, O.A. & Jaffar, O. 2009. Prediction of Johor river water quality
parameters using artificial neural networks. European Journal of
Scientific Research 28(3): 422-435.
Nather Khan, I.S.A. 1985. Studies on the
water quality and periphyton community in Linggi River Basin, Malaysia. PhD Diss., University of Malaya (unpublished)
Nather Khan, I.S.A. 1990. Assessment of water pollution using
diatom community structure and species distribution: A case study in a tropical
river basin. Internationae Revue der gesamten Hydrobiologie and Hydrographie 75(3): 317-338.
Nather Khan, I.S.A. 1991. Effect of urban
and industrial wastes on species diversity of the diatom community in a
tropical river, Malaysia. Hydrobiologia 224: 175-184.
Patrick, R. 1994. What are the requirements for an effective
biomonitor? In: Biological Monitoring of Aquatic Systems. Loeb, Stanford
L and Anne Spacie, eds. pp. 23-29.
Pineda,
F. 1987. Generalization of backpropagation to recurrent
neural networks. Physical Review Letters 19(59): 2229-2232.
Principe,
J.C., Euliano, N.R. & Lefebvre, W.C. 1999. Neural and Adaptive Systems:
Fundamentals Through Simulations. N.Y: John Wiley & Sons.
Putrajaya Corporation. 1998. Putrajaya
Lake Management Guide. Putrajaya Corporation, Selangor Darul Ehsan.
Recknagel, F., Welk,
A., Kim, B. & Takamura, N. 2006. Artificial Neural Network Approach to
Unravel and Forecast Algal Population Dynamics of Two Lakes Different in
Morphometry and Eutrophication. In: Recknagel, F. Ecological
Informatics (2nd ed.) NY: Springer-Verlag.
Recknagel, F., Kim, B.
& Welk, A. 2005. Unravelling and prediction of ecosystem behaviours of Lake Soyang
(South Korea) in response to changing seasons and management by means of
artificial neural networks. Verh. Internat. Verein. Limnol 29(3):
1497-1502.
Recknagel, F. 2001. Applications
of machine learning to ecological modelling. Ecological Modelling 146:
303-310.
Reynolds, C.S. 1984. The
Ecology of Freshwater Phytoplankton. Cambridge: Cambridge
University Press.
Round, F.E. 1984. The
Ecology of Algae. Cambridge : Cambridge University Press. pp 653.
Salleh, A. 1996. Panduan Mengenali
Alga Air Tawar. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Sawyer, C.N., McCarty,
P.L. & Parkin, G.F. 1994. Chemistry for Fnvironmental Engineering. New
York: McGraw-Hill.
Schultz, R., Wieland
& Lutze, G. 2000. Neural networks in argroecological modelling—stylish application or
helpful tool?. Computers and Electronics in
Agriculture 29: 73-97.
Sommer, U. 1989. Nutrient status and nutrient
competition of phytoplankton in a shallow, hypertrophic lake. Limnology
and Oceanography 34(7): 1162-1173.
Talib, A., Abu Hasan,
Y. & Abdul Rahman, N.N. 2009. Predicting biochemical oxygen demand as indicator of river pollution using
artificial neural networks. 18th World IMACS / MODSIM Congress, Cairns,
Australia 13-17 July 2009
Thomann, R.V. & Mueller, J.A. 1987. Principles
of Surface Water Quality Modeling and Control New York: Harrper and Row.
Vanni, M.J. & Temte, J. 1990.
Seasonal patterns of grazing and nutrient limitation of phytoplankton in a
eutrophic lake. Limnology and Oceanography 35: 697-709.
WHO. 1987. WHO, UNEP/WHO/UNESCO/WMO
Project on Global Environmental Monitoring. GEM Water
Operational Guide.
Werner, D. 1977. The
Biology of Diatoms. Bot. Monogr., V. 13.
Berkeley and New York: University of California Press,
Zhang, G.P., Patuwo, B.E. & Hu, M.Y.
1998. Forecasting with artificial neural networks: The state of the art. International
Journal of Forecasting 14: 35-62.
*Pengarang surat-menyurat; email: pian@um.edu.my
|