Sains Malaysiana 41(8)(2012): 983-991

 

 

Pengoptimuman Proses Pengeringan Semburan Gelatin denganMenggunakan

Kaedah Sambutan Permukaan

(Optimisation of the Gelatine Spray Drying Process using Response Surface Methodology)

 

N. Mohd Suhimi & A.Wahab Mohammad*

Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 8 September 2011 / Diterima: 30 Mac 2012

 

ABSTRAK

Proses pengeringan adalah proses akhir dalam penghasilan gelatin. Kaedah tradisi yang diaplikasi dalam industri adalah lebih rumit berbanding dengan kaedah pengering sembur. Serbuk gelatin dapat diperoleh dengan proses pengering sembur, tetapi jarang digunakan kerana dikhuatiri kualiti gelatin yang terhasil akan terjejas disebabkan proses degradasi protein. Objektif kajian ini adalah mendapatkan keadaan optimum penghasilan serbuk gelatin dengan menggunakan kaedah sambutan permukaan (RSM). Gelatin komersial jenis B (berkekuatan gel dalam julat 151-160) diperbuat daripada tulang lembu dan pengering sembur skala pandu digunakan dalam kajian ini. Pemboleh ubah tak bersandar yang diambil kira ialah kepekatan suapan larutan gelatin (6%(w/w) – 15%(w/w)) dan suhu pengoperasian (150oC-170oC). Pemboleh ubah bersandar yang diambil kira ialah peratus penghasilan, kandungan lembapan dan kekuatan gel serbuk gelatin. Keputusan uji kaji menunjukkan bahawa perbezaan kepekatan larutan suapan dan suhu masukan memberi kesan kepada ketiga-tiga sambutan tersebut di atas dengan faktor kepekatan larutan suapan adalah faktor utama yang memberi kesan kepada peratus penghasilan serbuk gelatin. Semakin tinggi kepekatan suapan, semakin berkurang peratus penghasilan. Serbuk gelatin yang dihasilkan mempunyai kekuatan Bloom di antara 149 – 173 dan ia tidak jauh berbeza dengan kekuatan Bloom gelatin komersial yang digunakan. Keadaan optimum yang diperoleh daripada analisis RSM ialah kepekatan suapan 9.23% (w/w) dan suhu masukan 170oC dengan penghasilan serbuk gelatin yang diperoleh ialah 22.15% dengan kandungan lembapan 3.81% dan kekuatan gel 168.5. Sisihan nilai daripada nilai ramalan ialah 0.09% bagi peratus penghasilan, 3.05% bagi kandungan lembapan dan 0.78% bagi kekuatan gel.

 

Kata kunci: Gelatin; kaedah sambutan permukaan; pengering sembur

 

ABSTRACT

Drying process is a final process in the production of gelatine. Traditional method applied in the industry is more complicated to operate compared with spray drying method. Gelatine powder can be obtained by the spray drying process. However it is rarely used because it might lead to lower quality of gelatine due to protein degradation. The objective of this work was to optimize the production of gelatine powder from spray drying using response surface methodology (RSM). Commercial type B gelatine (bloom strength 151-160) from cattle bones and pilot-scale spray dryer was used in this study. Two independent variables were considered namely feed concentration (6% (w/w) – 15% (w/w)) and inlet temperature (150oC-170oC). The dependent variables were yield, moisture content and gel strength of gelatine powder. The results showed that different feed concentration and inlet temperature affect all three responses where feed concentration was the main factor affecting the yield of gelatine powder. The higher the feed concentration of gelatine, the lower the resulting yields. The gelatine powder produced has Bloom strength between 149 and 173 which was slightly lower than the Bloom strength of commercial gelatine. The optimum conditions obtained from RSM analysis were feed concentration 9.23% (w/w) and inlet temperature of 170oC where the yield of gelatine produce was 22.15% with moisture content 3.81% and gel strength 168.5. It was found that deviation from the predicted value was 0.09% for yield, 3.05% for moisture content and 0.78% for gel strength.

 

Keywords: Gelatine; response surface methodology; spray drying

RUJUKAN

 

Bhandari, B.R., Patel, K.C. & Chen, X.D. 2008. Spray drying of food materials- process and product characteristics. Chen, X.D. & Mujumdar, A.S. (ed.). Drying Technologies in Food Processing, hlm 113-159. United Kingdom: John Wiley & Sons.

British Standard Institution. 1975. Methods for sampling and testing gelatin (Physical and Chemical Method). London: BSI.

Bruschi, M.L., Cardosa, M.L.C., Lucchesi, M.B. & Gremiao, M.P.D. 2003. Gelatin microparticles containing propolis obtained by spray drying technique: preparation and characterization. International Journal of Pharmaceutics 264: 45-55.

Chegini, G.R. & Ghobadian, B. 2005. Effect of spray drying conditions on physical properties of orange juice powder. Drying Technology 23: 657-668.

Filkova, I., Huang, L.X. & Mujumdar, A.S. 2007. Industrial spray drying system. Dlm. Handbook of Industrial Drying, Mujumdar, A.S. (ed.) Florida: CRC Press.

Gelatine Manufacturers of Europe Monograph (GME). 2000. Standardised Methods for the Testing of Edible Gelatine. version 1, July.

Hinterwaldner, R. 1977. Technology of gelatin manufacture. doWard, A.G. & Courts, A. (ed.) The Science and Technology of Gelatin, London: Academic Press Inc.

Mark, H.F. 2003. Encyclopedia of Polymer Science and Technology. 3rd ed. vol.6. New York: John Wiley Interscience.

Othmer, K. 1979. Encyclopedia of Chemical Technology. 3rd ed. vol.10. hlm 499-508. New York: John Wiley & Sons.

Razali, N., Mootabadi, H., Salamatinia, B., Lee, K.T. & Abdullah, A.Z. 2010. Optimization of process parameters for alkaline-catalysed transesterification of palm oil using response surface methodology, Sains Malaysiana 39(5): 805-809

Schrieber, R. & Gareis, H. 2007. Gelatine Handbook: Theory and Industrial Practice. Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA.

Tonon, R.V., Barbet, C. & Hubingr, N.D. 2008. Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mert.) powder produced by spray drying. Journal of Food Engineering 88: 411-418.

Walton, D.E. 2000. The morphology of spray-dried particles a qualitative view. Drying Technology 18(9): 1943-1986.

Wang, Y.X. & Lu, Z.X. 2004. Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa (Pers. Ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochem Eng. J. 20: 39-47.

Wang, Y.X. & Lu, Z.X. 2005. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochem. 40: 1043-1051.

Wangtueai, S. & Noomhorm, A. 2009. Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology 42: 825-834.

Wejse, P.L., Ingvorsen, K. & Mortensen, K.K. 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb. Technol. 32: 721-727.

 

*Pengarang untuk surat-menyurat; email: wahabm@vlsi.eng.ukm.my

 

 

sebelumnya