Sains Malaysiana 41(8)(2012): 983-991
Pengoptimuman Proses
Pengeringan Semburan Gelatin denganMenggunakan
Kaedah Sambutan
Permukaan
(Optimisation of the Gelatine Spray
Drying Process using Response Surface Methodology)
N. Mohd Suhimi & A.Wahab Mohammad*
Jabatan Kejuruteraan Kimia dan Proses, Fakulti
Kejuruteraan dan Alam Bina
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
Diserahkan: 8 September 2011 / Diterima:
30 Mac 2012
ABSTRAK
Proses pengeringan
adalah proses akhir dalam penghasilan gelatin. Kaedah tradisi
yang diaplikasi dalam industri adalah lebih rumit berbanding dengan kaedah
pengering sembur. Serbuk gelatin dapat diperoleh dengan proses pengering
sembur, tetapi jarang digunakan kerana dikhuatiri kualiti gelatin yang terhasil akan terjejas disebabkan proses degradasi protein. Objektif kajian ini adalah mendapatkan keadaan optimum penghasilan
serbuk gelatin dengan menggunakan kaedah sambutan permukaan (RSM). Gelatin
komersial jenis B (berkekuatan gel dalam julat 151-160) diperbuat daripada
tulang lembu dan pengering sembur skala pandu digunakan dalam kajian ini. Pemboleh ubah tak bersandar yang diambil kira ialah kepekatan
suapan larutan gelatin (6%(w/w) – 15%(w/w)) dan suhu pengoperasian (150oC-170oC). Pemboleh ubah bersandar yang diambil kira ialah peratus
penghasilan, kandungan lembapan dan kekuatan gel serbuk gelatin. Keputusan uji kaji menunjukkan bahawa perbezaan kepekatan larutan
suapan dan suhu masukan memberi kesan kepada ketiga-tiga sambutan tersebut di
atas dengan faktor kepekatan larutan suapan adalah faktor utama yang memberi
kesan kepada peratus penghasilan serbuk gelatin. Semakin
tinggi kepekatan suapan, semakin berkurang peratus penghasilan. Serbuk
gelatin yang dihasilkan mempunyai kekuatan Bloom di antara 149 – 173 dan ia tidak jauh berbeza dengan kekuatan Bloom gelatin
komersial yang digunakan. Keadaan optimum yang diperoleh daripada analisis RSM ialah kepekatan suapan 9.23%
(w/w) dan suhu masukan 170oC dengan penghasilan
serbuk gelatin yang diperoleh ialah 22.15% dengan kandungan lembapan 3.81% dan
kekuatan gel 168.5. Sisihan nilai daripada nilai ramalan ialah 0.09% bagi
peratus penghasilan, 3.05% bagi kandungan lembapan dan 0.78% bagi kekuatan gel.
Kata kunci: Gelatin;
kaedah sambutan permukaan; pengering sembur
ABSTRACT
Drying process is a
final process in the production of gelatine. Traditional method applied in the
industry is more complicated to operate compared with spray drying method.
Gelatine powder can be obtained by the spray drying process. However it is
rarely used because it might lead to lower quality of gelatine due to protein
degradation. The objective of this work was to optimize the production of
gelatine powder from spray drying using response surface methodology (RSM). Commercial type B gelatine
(bloom strength 151-160) from cattle bones and pilot-scale spray dryer was used
in this study. Two independent variables were considered namely feed
concentration (6% (w/w) – 15% (w/w)) and inlet temperature (150oC-170oC). The dependent variables
were yield, moisture content and gel strength of gelatine powder. The results
showed that different feed concentration and inlet temperature affect all three
responses where feed concentration was the main factor affecting the yield of
gelatine powder. The higher the feed concentration of gelatine, the lower the
resulting yields. The gelatine powder produced has Bloom strength between 149
and 173 which was slightly lower than the Bloom strength of commercial
gelatine. The optimum conditions obtained from RSM analysis were feed concentration 9.23% (w/w) and inlet
temperature of 170oC where
the yield of gelatine produce was 22.15% with moisture content 3.81% and gel
strength 168.5. It was found that deviation from the predicted value was 0.09%
for yield, 3.05% for moisture content and 0.78% for gel strength.
Keywords: Gelatine; response surface methodology; spray
drying
RUJUKAN
Bhandari, B.R., Patel, K.C. & Chen,
X.D. 2008. Spray drying of food materials- process and product characteristics.
Chen, X.D. & Mujumdar, A.S. (ed.). Drying Technologies in Food
Processing, hlm 113-159. United Kingdom: John Wiley & Sons.
British Standard
Institution. 1975. Methods
for sampling and testing gelatin (Physical and Chemical Method). London:
BSI.
Bruschi, M.L., Cardosa, M.L.C., Lucchesi,
M.B. & Gremiao, M.P.D. 2003. Gelatin microparticles containing propolis
obtained by spray drying technique: preparation and characterization. International
Journal of Pharmaceutics 264: 45-55.
Chegini, G.R. & Ghobadian, B. 2005. Effect of spray drying conditions on physical properties of orange
juice powder. Drying Technology 23: 657-668.
Filkova, I., Huang, L.X. & Mujumdar,
A.S. 2007. Industrial spray drying system. Dlm. Handbook
of Industrial Drying, Mujumdar, A.S. (ed.) Florida:
CRC Press.
Gelatine Manufacturers of Europe
Monograph (GME). 2000. Standardised Methods for the Testing of Edible Gelatine. version 1, July.
Hinterwaldner, R. 1977. Technology of gelatin manufacture. doWard,
A.G. & Courts, A. (ed.) The Science and Technology of Gelatin, London: Academic Press Inc.
Mark, H.F. 2003. Encyclopedia
of Polymer Science and Technology. 3rd ed. vol.6. New York: John Wiley Interscience.
Othmer, K. 1979. Encyclopedia
of Chemical Technology. 3rd ed. vol.10. hlm 499-508. New York: John Wiley & Sons.
Razali, N., Mootabadi,
H., Salamatinia, B., Lee, K.T. & Abdullah, A.Z. 2010. Optimization of process parameters for
alkaline-catalysed transesterification of palm oil using response surface
methodology, Sains Malaysiana 39(5): 805-809
Schrieber, R. & Gareis, H. 2007. Gelatine
Handbook: Theory and Industrial Practice. Weinheim: WILEY-VCH Verlag GmbH
& Co. KgaA.
Tonon, R.V., Barbet, C. & Hubingr,
N.D. 2008. Influence of process conditions on the physicochemical properties of
acai (Euterpe oleraceae Mert.) powder produced by spray drying. Journal
of Food Engineering 88: 411-418.
Walton, D.E. 2000. The
morphology of spray-dried particles a qualitative view. Drying
Technology 18(9): 1943-1986.
Wang, Y.X. & Lu, Z.X. 2004. Statistical optimization of media for extracellular polysaccharide
by Pholiota squarrosa (Pers. Ex Fr.) Quel. AS 5.245 under submerged cultivation. Biochem Eng. J. 20:
39-47.
Wang, Y.X. & Lu, Z.X. 2005. Optimization of processing parameters for the mycelial growth and
extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochem. 40: 1043-1051.
Wangtueai, S. &
Noomhorm, A. 2009. Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology 42: 825-834.
Wejse, P.L., Ingvorsen, K. &
Mortensen, K.K. 2003. Xylanase production by a novel halophilic bacterium
increased 20-fold by response surface methodology. Enzyme Microb. Technol. 32:
721-727.
*Pengarang untuk surat-menyurat; email: wahabm@vlsi.eng.ukm.my
|