Sains Malaysiana 42(3)(2013):
325–332
Development of Analytical Probabilistic Model Parameters for
Urban Stormwater Management
(Pembangunan Parameter
Kebarangkalian Analisis untuk Pengurusan Air Ribut di Bandar)
Salisu Dan’azumi*
Faculty of Civil
Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
Supiah Shamsudin
Razak School of Engineering
and Advanced Technology, Universiti Teknologi Malaysia
54100, Kuala Lumpur, Malaysia
Azmi Aris
Institute of Environmental
and Water Resource Management, Faculty of Civil Engineering
Universiti Teknologi
Malaysia, 81310, Skudai, Johor, Malaysia
Diserahkan: 13 Julai
2011/Diterima: 1 September 2012
ABSTRACT
Analytical probabilistic models (APM) are closed form mathematical
expressions for long term system’s output performance derived from the
probability distribution of the system’s input variables. In order to apply the APM for urban stormwater control
systems’ design, APM parameters
have to be made known. These input parameters include APM parameters which are derived from the meteorological rainfall
characteristics; storm depth, duration, intensity and inter-event time. This
study is aimed to develop meteorological APM parameters
that can be used for detention pond design in Peninsular Malaysia. Hourly
rainfall data covering 10 to 40 years period were analyzed from 13 different
locations spread across the Peninsular. The data were analyzed to obtain the APM parameters at different values
of minimum storm separation time (MSST).
The APM parameter of rainfall
duration (λ) was found to range from a mean value of 0.260 h-1 for 2 h MSST to 0.04 h-1 for
24 h MSST. The APM parameter of rainfall volume (ζ) ranges from a mean value of
0.091 mm-1 for 2 h MSST to 0.038 mm-1 for
24 h MSST. Similarly, the APM parameter of rainfall
intensity (β) ranges from a mean value of 0.355 h/mm for 2 h MSST to 0.504 h/mm for 24 h MSST. Finally, the APM parameter of inter-event time (ψ) ranges from a mean value
of 0.025 h-1 for 2 h MSST to 0.012 h-1 for
24 h MSST. Once the APM parameters are determined for
a particular area, the long term stormwater control systems’ performance can
easily be determined.
Keywords: Analytical probabilistic
models (APM); detention pond;
meteorological characteristics; stormwater management
ABSTRAK
Model kebarangkalian analisis (APM) adalah ungkapan matematik
berbentuk tertutup bagi prestasi keluaran sistem jangka panjang diterbitkan
daripada taburan kebarangkalian pemboleh ubah input sistem. Untuk
menggunakan aplikasi APM dalam
reka bentuk sistem kawalan air-ribut bandar, parameter APM perlu diketahui. Parameter input ini termasuk parameter APM yang diterbitkan daripada ciri
hujan meteorologi; kedalaman ribut, tempoh, keamatan dan masa antara-peristiwa. Kajian ini bertujuan untuk menghasilkan parameter APM meteorologi yang boleh
digunakan untuk reka bentuk kolam tahanan di Semenanjung Malaysia. Data
hujan setiap jam yang merangkumi 10 hingga 40 tahun telah dianalisis dari 13
lokasi berlainan di seluruh Semenanjung. Data dianalisis
untuk mendapatkan parameter APM pada
nilai masa pengasingan ribut minimum (MSST)
yang berbeza. Parameter APM tempoh
hujan (λ) adalah bernilai purata 0.260 jam-1 untuk 2 jam MSST ke
0.04 jam-1 untuk MSST 24 jam. Parameter APM isi
padu hujan (ζ) bernilai purata antara 0.091 mm-1 untuk 2 jam MSST ke
0.038 mm-1 untuk MSST 24 jam. Begitu juga, parameter APM keamatan hujan (β) adalah antara nilai purata 0.355 jam/mm
untuk 2 jam MSST ke 0.504 jam/mm untuk MSST 24 jam. Akhirnya, parameter APM antara peristiwa masa (ψ)
bernilai purata 0.025 jam-1 untuk
2 jam MSST ke 0.012 jam-1 untuk 24 jam MSST.
Apabila parameter APM telah
ditentukan bagi kawasan tertentu, prestasi sistem kawalan air-ribut jangka
panjang dapat ditentukan dengan mudah.
Kata kunci: Ciri meteorologi; model kebarangkalian analitis;
penahanan kolam; pengurusan air- rebut
REFERENCES
Adams,
B.J. & Papa, F. 2000. Urban Stormwater
Management Planning with Analytical Probabilistic Models. New York:
John Wiley & Sons.
Behera, P.K., Adams,
B.J. & Li, J.Y. 2006. Runoff quality analysis of urban
catchments with analytical probabilistic models. Journal of Water
Resources Planning and Management, ASCE 132: 4-14.
Burgueno,
A., Codina, B., Redafio, A. & Lorente, J. 1994. Basic
statistical characteristics of hourly rainfall amounts in Barcelona (Spain). Theor. Appl. Climatol. 49: 175-181.
Chen,
J. & Adams, B.J. 2005a. Analysis of storage
facilities for urban stormwater quantity control. Advances in Water
Resources 28: 377-392.
Chen,
J. & Adams, B.J. 2005b. Urban storm water control evaluation with
analytical probabilistic models. Journal of Water Res. Planning and
Management, ASCE 131: 362-374.
Chen, J. & Adams, B.
J. 2006a. Analytical urban storm water quality models based on pollutant
buildup and washoff processes. Journal of Environmental Engineering, ASCE 132:
1314-1330.
Chen,
J. & Adams, B.J. 2006b. Urban stormwater quality
control analysis with detention ponds. Water Env. Res. 78:
744-753.
Chen,
J. & Adams, B.J. 2007a. A derived probability
distribution approach to stormwater quality modeling. Advances in
Water Resources 30: 80-100.
Chen,
J. & Adams, B.J. 2007b. Development of analytical
models for estimation of urban stormwater runoff. Journal of
Hydrology 336: 458-469.
DID. 2000. Urban
Stormwater Management Manual for Malaysia. Department of
Irrigation and Drainage, Malaysia.
Dunkerley, D. 2008.
Identifying individual rain events from Pluviograph records: A review with
analysis of data from an Australian Dryland Site. Hydrol. Process 22:
5024-5036.
Guo, J.C.Y. 2002.
Overflow risk analysis for stormwater quality control basins. Journal of
Hydrologic Engineering 7: 428-434.
Guo,
Y. & Adams, B.J. 1998a. Hydrologic analysis of urban catchment with event
based probabilistic models, 2. Peak discharge rate. Water
Resource Research 34: 3433-3443.
Guo,
Y. & Adams, B.J. 1998b. Hydrologic analysis of urban catchment with
event based probabilistic models, runoff volume. Water Resource Research 34:
3421-3432.
Guo,
Y. & Adams, B.J. 1999a. Analysis of detention ponds
for storm water quality control. Water Resources Research 35(8):
2447-2456.
Guo,
Y. & Adams, B.J. 1999b. An analytical probabilistic
approach to sizing flood control detention facilities. Water Resource
Research 35: 2457-2468.
Li, J.Y. & Adams,
B.J. 2000. Probabilistic models for analysis of urban runoff control systems. Journal
of Environmental Engineering, ASCE 126: 217-224.
Restro-Posada,
P.J. & Eagleson, P.S. 1982. Identification of independent
rainstorms. Journal of Hydrology 55: 303-319.
Shammaa, Y., Zhu, D.Z.,
Gyürék, L.L. & Labatiuk, C.W. 2002. Effectiveness of dry ponds for
stormwater total suspended solids removal. Can. J. Civ. Eng. 29:
316-324.
Supiah,
S., Dan’azumi, S. & Aris, A. 2010. Effect of storm separation time on
rainfall characteristics: A case study of Johor, Malaysia. European Journal
of Scientific Research 45: 162-167.
*Pengarang untuk surat-menyurat; email: sdanazumi@gmail.com
|