Sains Malaysiana 43(6)(2014): 833–842

 

Characteristics of Nanostructured CaxZn(1-x)Al2O4 Thin Films Prepared by Sol-Gel Method

for GPS Patch Antennas

(Ciri Filem Nipis CaxZn(1-x)Al2O4 Berstruktur Nano yang Dihasilkan Melalui Kaedah

Sol-Gel untuk GPS Tampalan Antena)

WAN NASARUDIN WAN JALAL1, HUDA ABDULLAH1*, MOHD SYAFIQ ZULFAKAR1, SAHBUDIN SHAARI2, MOHAMMAD THARIQUL ISLAM3& BADARIAH BAIS1

 

1Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

3The Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Diserahkan: 28 Mac 2013/Diterima: 2 Februari 2014

 

ABSTRACT

CaxZn(1-x)Al2O4 thin films (x = 0.00; 0.05; 0.10; 0.15 and 0.20) were prepared by sol-gel method with the substitution of Zn2+ by Ca2+ in the framework of ZnAl2O4. The effect of Ca addition on the structure and morphology of CaZnAl2O4 thin films was investigated by x-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), energy-dispersive x-ray spectroscopy (EDX), ultra-violet visible (UV-Vis) and atomic force microscope (AFM). The XRD patterns showed the characteristic peaks of face-centred cubic (fcc) ZnAl2O4 and CaZnAl2O4. The addition of Ca increased the crystallite size from 8.9 to 30.2 nm. The bandgap of CaxZn(1-x)Al2O4 thin film was found in the range of 3.40 to 3.84 eV. SEM micrograph shows the morphology of all thin films is sphere-like, with the grain size increased from 33 to 123 nm. The AFM images show the roughness of surface morphology increased. The substitution of Zn2+ by Ca2+ increased the crystallite size, grain size and surface roughness which evidently increased the density (4.59 to 4.64 g/cm3) and dielectric constant (8.48 to 9.54). The composition of

CaxZn(1-x)Al2O4 is considered as suitable material for GPS patch antennas.

 

 Keywords: Band gap; Ca-ZnAl2O4; GPS patch antena; nanostructures

 

ABSTRAK

Filem nipis CaxZn(1-x)Al2O4(x = 0.00; 0.05; 0.10; 0.15 dan 0.20) telah dihasilkan dengan kaedah sol-gel iaitu menggantikan Zn2+ dengan Ca2+ di dalam bahan utama ZnAl2O4. Kesan terhadap penambahan Ca pada struktur dan morfologi filem nipis CaZnAl2O4 telah dianalisis dengan menggunakan pembelauan sinar-x (XRD), mikroskopi imbasan pancaran medan elektron (FESEM), x-ray serakan tenaga spektroskopi (EDX), cahaya nampak ultra lembayung (UV-Vis) dan mikroskopi daya atomik (AFM). Corak pembelauan XRD menunjukkan ciri-ciri puncak berpusat muka padu pada bahan ZnAl2O4 dan CaZnAl2O4. Penambahan Ca telah meningkatkan saiz kristal daripada 8.9 kepada 30.2 nm. Jalur tenaga bagi filem nipis CaxZn(1-x)Al2O4 ialah antara 3.40 hingga 3.84 eV. Graf mikro SEM menunjukkan morfologi bagi kesemua filem nipis adalah berbentuk butiran dengan saiz butiran meningkat daripada 33 kepada 123 nm. Imej AFM menunjukkan berlakunya peningkatan pada permukaan morfologi CaxZn(1-x)Al2O4. Penggantian Zn2+ dengan Ca2+ telah meningkatkan saiz butiran dan peningkatan kekasaran permukaan yang seterusnya memberi kesan terhadap ketumpatan bahan (4.59 kepada 4.64 g/cm3) dan pemalar dielektrik (8.48 kepada 9.54). Komposisi CaxZn(1-x)Al2O4 dianggap sebagai bahan yang sesuai untuk penghasilan GPS tampalan antena.

 

Kata kunci: Ca-ZnAl2O4; GPS tampalan antena; jalurtenaga; strukturnano

RUJUKAN

Barros, B.S., Melo, P.S., Kiminami, R.H.G.A., Costa, A.C.F.M., de Sa, G.F. & Alves Jr. S. 2006. Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction. Journal of Material Science 41: 4744-4748.

Bian, J.J., Yan, K. & Dong, Y.F. 2008. Microwave dielectric properties of A1-3x/2 La x (Mg ½) 0 3 (A = Ba, Sr, Ca; 0.0 < 0.05) double perovskites. Materials Science and Engineering B – advanced Functional Solid-State Materials 147(1): 27-34.

Chatpong Bangbai, Krisana Chongsri, Wisanu Pecharapa & Wicharn Techitdheera. 2013. Effect of Al and N doping on structural and optical properties of sol-gel derived ZnO thin films. Sains Malaysiana 42: 239-246.

Chen, Y-C. 2011. Microwave dielectric properties of (Mg(1−x) Cox)2SnO4 ceramics for application in dual-band inverted-e-shaped monopole antenna. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58: 2531-2538.

Ciupina, V., Carazeanua, I. & Prodan, G. 2004. Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techniques. Journal of Optoelectronics and Advanced Materials 6: 1317-1322.

de Souza, L.K.C., Zamian, J.R., da Rocha Filho, G.N., Soledad, L.E.B., dos Santos, I.M.G., Souza, A.G., Scheller, T., Angelica, R.S. & da Costa, C.E.F. 2009. Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments 81: 187-192.

Farley, N.R.S., Staddon, C.R., Zhao, L.X., Edmonds, K.W., Gallagher, B.L. & Gregory, D.H. 2003. New sol-gel synthesis of ordered nanostructured doped ZnO films. J. App. Phys. 93: 1-8.

Fatemeh Davara & Masoud Salavati-Niasaria. 2011. Synthesis and characterization of spinel- type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. Journal of Alloys and Compounds 509: 2487-2492.

Fauzana, A.N., Azmi, B.Z., Sabri, M.G.M., Wan Abdullah, W.R. & Hashim, M. 2013. Microstructural and nonlinear electrical properties of ZnO ceramics with small amount of MnO2 dopant. Sains Malaysiana 42: 1139-1144.

Huang, C-L., Chen, J-Y. & Li, B-J. 2009. Characterization and dielectric behavior of a new dielectric ceramics Ca(Mg1/3Nb2/3)O3–(Ca0.8Sr0.2)TiO3 at microwave frequencies. J. of Alloys and Compounds 484: 494-497.

Huang, C-L., Chen, J-Y. & Wang, Y-H. 2009. Microwave dielectric properties of (Mg0.95Co0.05)TiO3-(Na0.5Nd0.5) TiO3 ceramic system. J. of Alloys and Compounds 478: 842-846.

Huang, C-L., Yang, T-J. & Huang, C-C. 2009. Low dielectric l oss c eramics in the ZnAl2O4–TiO2 s ystem as a τf compensator. J. of the American Ceramic Society 92: 119-124.

Hui Zhang, Liang, Fang, Elsebrock, R. & Yuan, R.Z. 2005. Crystal structure and microwave dielectric properties of a new A6B5O18-type cation-deficient perovskite Ba3La3Ti4NbO18. Materials Chemistry and Physics 93: 450-454.

Ianos, R., Lazau, R., Lazau, I. & Pacurariu, C. 2011. Chemical oxidation of residual carbon from ZnAl2O4 powders prepared by combustion synthesis. 2012. J. of the European Ceramic Society 32: 1605-1611.

Kingery, W., Bowen, H. & Uhlmann, D. 1976. Introduction to Ceramics. John Willey & Son, New York.

Koops, C.G. 1951. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Physics Review 81: 121-124.

Lei, W., Lu, W-Z., Wang, X-H., Liang, F. & Wang, J. 2011. Phase composition and microwave dielectric properties of ZnAl2O4-Co2TiO4 low-permittivity ceramics with high quality factor. J. of the American Ceramic Society 94: 20-23.

Lei, W., Lu, W-Z., Liu, D. & Zhu, J-H. 2009. Phase evolution and microwave dielectric properties of (1-x)ZnAl2O4-x Mg2TiO4 ceramics. Journal of the American Ceramic Society 92: 105-109.

Muhammad E. Abdul Jamal, Sakthi Kumar D. & Anantharaman, M.R. 2011. On structural, optical and dielectric properties of z inc a luminate nanoparticles. Bull. Mater. Sci.34: 251-259.

Narang, S.B. & Shalini, B. 2010. Low loss dielectric ceramics for microwave applications: A review. Journal of Ceramic Processing Research 11: 316-321.

Nikumbh, A.K. & Adhyapak, P.V. 2010. Synthesis, properties and optimization of the rheologicalbehaviors on alumina and zinc aluminate powders obtain from dicarboxylate precursors. Powder Technology 202: 14-23.

Renata, F.M. & Osvaldo, A.S. 2010. Thin f ilm of ZnAl2O4: Eu3+ synthesized by a non-alkoxide precursor sol-gel method. Journal of Brazil Chemistry Society 21: 1395-1398.

Rodríguez, M.A., Aguilar, C.L. & Aghayan, M.A. 2012. Solution combustion synthesis and sintering behavior of CaAl2O4. Ceramics International 38: 395-399.

Saberi, A., Golestani-Fard, F., Sarpoolaky, H., Willert-Porada, M., Gerdes, T. & Simon, R. 2008. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route. Journal of Alloy Compound 462: 142-146.

Sanchez, R.D., Saleta, M.E., Shapoval, O., Gehrke, K., Moshnyaga, V. & Samwer, K. 2010. Characterization of geometrically frustrated Zn1-xMnxAl2O4 thin films prepared by metalorganic aerosol deposition. Journal of Physics: Conference Series 200: 1-4.

Sebastian, M.T. 2008. Dielectric Materials for Wireless Communication. Jordan Hill, Oxford, UK: Elsevier Ltd.

Subramanian, M.A., Shannon, R.D., Chai, B.H.T., Abraham, M.M. & Wintersgill, M.C. 1989. Dielectric constants of BeO, MgO, and CaO using the two-terminal method. Phys. Chem. Minerals 16: 741-746.

Surendran, K.P., Santha, N., Mohanan, P. & Sebastian, M.T. 2004. Temperature stable low loss ceramic dielectrics in (1-x) ZnAl2O4-xTiO2 system for microwave substrate applications. The European Physical Journal B 41: 301-306.

Suresh K Sampath, D.G. Kanhere & Ravindra Pandey. 1999. Electronic structure of spinel oxides: Zinc aluminate and zinc gallate. J. Phys. Condens. Matter 11: 3635-3644.

Tawatchai Charinpanitkul, Pattama Poommarin, Akkarat Wongkaew & Kim, K-S. 2009. Dependence of zinc aluminate microscopic structure on its synthesis. Journal of Industrial and Engineering Chemistry 15: 163-166.

Thinesh Kumar, R., Clament Sagaya Selvam, N., Ragupathi, C., John Kennedy, L. & Judith Vijaya, J. 2012. Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder Technology 224: 147-154.

Tian, X., Wan, L., Pan, K., Tian, C., Fu, H. & Shi, K. 2009. Facile synthesis of mesoporous ZnAl2O4 thin films through the evaporation-induced self-assembly method. Journal of Alloys and Compounds 488(1): 320-324.

Wagner, K.W. 1913. Zur theorie der unvollkommenen dielektrika. Annalen der Physik 345: 817-855.

Wang, X.C., Lei, W. & Lu, W.Z. 2009. Novel ZnAI204-based microwave dielectric ceramics with machinable property and its application for GPS antenna. Ferroelectrics 388: 80-87.

Wood, D.L. & Tauc, J. 1972. Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5: 3144-3151.

Wu, J-M., Lu, W-Z., Lei, W. & Wang, X-C. 2011. Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting. Materials Research Bulletin 46: 1485-1489.

Xavier, C.S., Sczancoski, J.C., Cavalcante, L.S., Paiva- Santos, C.O., Varela, J.A., Longo, E. & Li, M.S. 2009. A new processing method of CaZn2(OH)6.2H2O powders: Photoluminescence and growth mechanism. Solid State Sciences 11: 2173-2179.

Ye, X., Wen, W.L. & Lu, W-Z. 2009. Microwave dielectric characteristics of Nb2O5-added 0.9Al2O3–0.1TiO2 ceramics. Ceramics International 35: 2131-2134.

Zawadzki, M., Staszak, W., López-Suárez, F.E., Illán-Gómez, M.J. & Bueno-López, A. 2009. Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels. Applied Catalysis A: General 371: 92-98.

Zhang, D., Wang, C., Liu, Y., Shi, Q., Wang, W. & Zhai, Y. 2012. Green and red photoluminescence from ZnAl2O4: Mn phosphors prepared by sol-gel method. Journal of Luminescence 132: 1529-1531.

 

 

*Pengarang untuk surat-menyurat; email: huda@vlsi.eng.ukm.edu.my

 

 

sebelumnya