Sains Malaysiana 43(6)(2014): 867–875
First Principles Investigations of
Electronic, Photoluminescence and Charge Transfer Properties of the
Naphtho[2,1-b:6,5-b′]difuran and Its Derivatives for OFET
(Prinsip
Pertama Kajian
Elektronik, Fotopendarkilau
dan Ciri Pemindahan Cas Nafto
[2,1-b :6,5-b
‘] difuran dan Terbitannya untuk OFET)
AIJAZ RASOOL
CHAUDHRY13, R. AHMED1*, AHMAD IRFAN4, A. SHAARI1, HASMERYA
MAAROF2& ABDULLAH
G. AL-SEHEMI45
1Department of Physics, Faculty of Science,
Universiti Teknologi
Malaysia, UTM Skudai, 81310 Johor, Malaysia
2Department of Chemistry, Faculty of Science,
Universiti Teknologi
Malaysia, UTM Skudai,
81310 Johor, Malaysia
3Department of Physics, Faculty of Science,
King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
4Department of Chemistry, Faculty of Science,
King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
5Unit of Science and Technology, Faculty
of Science, King Khalid University, Abha
61413
P.O. Box 9004, Saudi Arabia
6Center of Excellence for Advanced
Materials Research, King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
Diserahkan: 1 April 2013/Diterima:
17 Disember 2013
ABSTRACT
We have designed new derivatives of
naphtha [2,1-b:6,5-b′] difuran as DPNDF-CN1 and
DPNDF-CN2. The molecular structures
of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2
have been optimized at the ground (S0)
and first excited (S1) states
using density functional theory (DFT)
and time-dependent density functional theory (TD-DFT),
respectively. Then the highest occupied molecular orbitals (HOMOs),
the lowest unoccupied molecular orbitals (LUMOs),
photoluminescence properties, electron affinities (EAs),
reorganization energies (λs) and
ionization potentials (IPs) have been investigated.
The balanced λ(h) and λ(e)
showed that DPNDF,
DPNDF-CN1 and DPNDF-CN2
would be better charge transport materials for both
hole and electron. The effect of attached acceptors on the geometrical
parameters, electronic, optical and charge transfer properties have
also been investigated.
Keywords: Computer modeling and simulation;
electronic materials; first principle calculations; organic semiconductors;
photoluminescence
ABSTRAK
Kami telah
mereka bentuk
terbitan baru nafta
[2,1-b :6,5-b′] difuran
sebagai DPNDF-CN1 dan DPNDF-CN2.
Struktur
molekul DPNDF,
terbitannya DPNDF-CN1 dan DPNDF-CN2 telah dioptimumkan pada keadaan asas
(S0) dan
teruja pertama
(S1) masing-masing
dinyatakan menggunakan
teori ketumpatan berfungsi (DFT)
dan teori
ketumpatan berfungsi bersandarkan masa (TD-DFT).
Maka
orbital molekul berisi
tertinggi (HOMOs),
orbital molekul tak
berisi terendah (LUMOs),
ciri-ciri fotopendarkilau, kesamaan elektron (EA),
tenaga penyusunan
semula (λs) dan keupayaan pengionan
(IP) telah
dikaji. λ(h)
dan λ(e) yang seimbang
menunjukkan bahawa DPNDF, DPNDF-CN1
dan DPNDF-CN2
merupakan bahan-bahan
angkutan cas
yang baik untuk kedua-dua
lohong dan
elektron. Kesan pengepilan penerima ke atas parameter geometri, sifat pemindahan elektronik, optik dan cas juga telah dikaji.
Kata
kunci: Bahan-bahan
elektronik; fotopendarkilau; pemodelan komputer dan simulasi;
pengiraan prinsip pertama;
semikonduktor organik
RUJUKAN
Bauernschmitt, R. & Ahlrichs,
R. 1996. Treatment of electronic excitations within the
adiabatic approximation of time dependent density functional theory. Chem.
Phys. Lett. 256(4-5): 454-464.
Becke, A.D. 1993. Density-functional thermochemistry. III. The role of
exact exchange. J. Chem. Phys. 98(7): 5648-5652.
Brédas, J.L., Beljonne, D., Coropceanu, V.
& Cornil, J. 2004. Charge-transfer and energy-transfer processes in Π-conjugated oligomers
and polymers: A molecular picture. Chem. Rev. 104(11): 4971-5004.
Brédas, J.L., Cornil, J., Beljonne, D., dos
Santos, D.A. & Shuai, Z. 1999. Excited-state electronic structure of conjugated oligomers and polymers: A
quantum-chemical approach to optical phenomena. Acc. Chem. Res. 32(3):
267-276.
Brédas, J.L., Calbert, J.P.,
da Silva Filho, D.A. & Cornil,
J. 2002. Organic semiconductors: A theoretical characterization of the basic
parameters governing charge transport. Proc. Natl. Acad. Sci. 99(9):
5804-5809.
Bredas, J.L. & Street, G.B. 1985. Polarons, bipolarons, and solitons in
conducting polymers. Acc. Chem. Res. 18(10): 309-315.
Buonocore, F. &
Matteo, A. 2009. Energetic of molecular interface at metal-organic heterojunction: The case of thiophenethiolate chemisorbed on Au(111). Theor.
Chem. Acc. 124(3-4): 217-223.
Chaudhry, A.R., Ahmed, R., Irfan, A., Shaari, A. & Al-Sehemi, A.G.
2013. Quantum chemical approach toward the electronic, photophysical and charge transfer properties of the
materials used in organic eield-effect transistors. Mater.
Chem. Phys. 138(2-3): 468-478.
Cho, E., Risko, C., Kim, D., Gysel, R.,
Cates Miller, N., Breiby, D.W., McGehee,
M.D., Toney, M.F., Kline, R.J. & Bredas, J.-L.
2012. Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-Bis(3- Alkylthiophene-2-Yl)Thieno[3,2-B]Thiophene) films. J.
Am. Chem. Soc. 134(14): 6177-6190.
Cornil, J., dos Santos, D.A., Crispin, X., Silbey, R. & Brédas, J.L.
1998. Influence of interchain interactions on the
absorption and luminescence of conjugated oligomers and polymers: A
quantum-chemical characterization. J. Am. Chem. Soc. 120(6): 1289-1299.
Coropceanu, V., Nakano, T., Gruhn,
N.E., Kwon, O., Yade, T., Katsukawa,
K.-i. & Brédas, J.-L. 2006. Probing charge transport in
Π-stacked fluorene-based systems. J. Phys.
Chem. B 110(19): 9482-9487.
Das, S., Senanayak, S.P., Bedi, A.,
Narayan, K.S. & Zade, S.S. 2011. Synthesis and
charge carrier mobility of a solution-processable conjugated copolymer based on cyclopenta[C] Thiophene. Polymer 52(25): 5780-5787.
Distefano, G., Jones,
D., Guerra, M., Favaretto, L., Modelli,
A. & Mengoli, G. 1991. Determination of the electronic structure of oligofurans and extrapolation to polyfuran. J. Phys.
Chem. 95(24): 9746-9753.
E. Katz, H.
1997. Organic molecular solids as thin film transistor semiconductors. J.
Mater. Chem. 7(3): 369-376.
Frisch, M., Trucks, G., Schlegel, H.B., Scuseria,
G., Robb, M., Cheeseman, J., Scalmani,
G., Barone, V., Mennucci,
B. & Petersson, G. 2009. Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford,
CT 270(271.
Furche, F. & Ahlrichs, R. 2002. Adiabatic time-dependent
density functional methods for excited state properties. J. Chem. Phys. 117(16):
7433-7447.
Gidron, O., Dadvand, A., Sheynin, Y., Bendikov, M. & Perepichka,
D.F. 2011. Towards “Green” electronic materials. α-oligofurans as semiconductors. Chem. Commun. 47(7): 1976-1978.
Gruhn, N.E., da Silva Filho, D.A., Bill,
T.G., Malagoli, M., Coropceanu,
V., Kahn, A. & Brédas, J.L. 2002. The vibrational
reorganization energy in pentacene: Molecular
influences on charge transport. J. Am. Chem. Soc. 124(27): 7918-7919.
Ho, P.K.H.,
Kim, J.S., Burroughes, J.H., Becker, H., Li, S.F.Y.,
Brown, T.M., Cacialli, F. & Friend, R.H. 2000. Molecular-scale interface engineering for polymer light-emitting
diodes. Nature 404(6777): 481-484.
Hofmann,
A.W. 1856. On insolinic acid. Proc. R. Soc. Lond. 8(1): 1-3.
Horowitz, G.
& Hajlaoui, M.E. 2000. Mobility
in polycrystalline oligothiophene field-effect
transistors dependent on grain size. Adv. Mater. 12(14):
1046-1050.
Irfan, A., Al-Sehemi, A.G., Muhammad, S. & Zhang, J. 2011a. Packing
effect on the transfer integrals and mobility in α,α′-Bis(Dithieno[3,2-B:2′,3′-D]Thiophene) (Bdt) and its
heteroatom-substituted analogues. Aust. J. Chem. 64(12): 1587-1592.
Irfan, A., Nadeem, M., Athar, M., Kanwal, F. & Zhang, J. 2011b. Electronic,
optical and charge transfer properties of α,α′-Bis(Dithieno[3,2-B:2′,3′-
D]Thiophene) (Bdt) and its
heteroatom-substituted analogues. Comput. Theor. Chem. 968(1-3): 8-11.
Irfan, A., Zhang,
J. & Chang, Y. 2010. Theoretical investigations of the charge
transfer properties of anthracene derivatives. Theor. Chem. Acc. 127(5-6): 587-594.
Irfan, A., Cui,
R. & Zhang, J. 2009. Fluorinated derivatives of Mer-Alq3: Energy decomposition
analysis, optical properties, and charge transfer study. Theor. Chem. Acc. 122(5-6): 275-281.
IUPAC. 1997.
Compendium of Chemical Terminology (the Gold Book). 2nd ed.
Compiled by Mcnaught, A.D. &
Wilkinson, A. Oxford: Blackwell Scientific Publications.
Koezuka, H.,
Tsumura, A. & Ando, T. 1987. Field-effect
transistor with polythiophene thin film. Synth.
Met. 18(1-3): 699-704.
Lee, C., Yang, W. & Parr, R.G. 1988. Development of the Colle- Salvetti correlation-energy formula into a functional of
the electron density. Phys. Rev. B 37(2): 785-789.
Lee, J.E., Choi, G.C., Park, N.G., Ha, Y.K. & Kim, Y.S. 2004. Elucidation of the structure of a highly efficient blue emitting
lithium boron 2-(2-Hydroxyphenyl) benzoxazole. Curr. Appl. Phys. 4(6): 675-678.
Letizia, J.A., Cronin, S., Ortiz, R.P., Facchetti, A., Ratner, M.A. & Marks, T.J. 2010. Phenacyl–Thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility N-channel
field-effect transistors. Chem. - A Eur. J. 16(6): 1911-1928.
Li, E., Kim, A. & Zhang, L. 2007. Modeling
excited states of fluorescent compounds with Uv-Vis
spectra calculations. Comp. Chem. Moodle. 1(1): 01- 07.
Marcus, R.A.
1993. Electron transfer reactions in chemistry: Theory and experiment. Rev.
Mod. Phys. 65(3): 599-610.
Mitsui, C., Soeda, J., Miwa, K., Tsuji,
H., Takeya, J. & Nakamura, E. 2012. Naphtho[2,1-B:6,5-B′]Difuran: A versatile motif available for solution-processed
single-crystal organic field-effect transistors with high hole mobility. J.
Am. Chem. Soc. 134(12): 5448-5451.
Miyata, Y., Nishinaga, T. & Komatsu, K. 2005. Synthesis and
structural, electronic, and optical properties of oligo(Thienylfuran)S
in comparison with oligothiophenes and oligofurans. J. Org. Chem. 70(4): 1147-1153.
Miyata, Y., Terayama, M., Minari, T., Nishinaga, T., Nemoto, T., Isoda, S. &
Komatsu, K. 2007. Synthesis of oligo(Thienylfuran)S with thiophene rings at both ends and their structural,
electronic, and field-effect properties. Chem. - An Asian J. 2(12):
1492-1504.
Mohakud, S., Alex,
A.P. & Pati, S.K. 2010. Ambipolar charge transport in α-Oligofurans:
A theoretical study. J. Phys. Chem. C 114(48): 20436-20442.
Newman,
C.R., Frisbie, C.D., da Silva Filho,
D.A., Brédas, J.L., Ewbank,
P.C. & Mann, K.R. 2004. Introduction to organic thin film
transistors and design of n-channel organic semiconductors. Chem.
Mater. 16(23): 4436-4451.
Padinger, F., Rittberger, R.S. & Sariciftci,
N.S. 2003. Effects of postproduction treatment on plastic
solar cells. Adv. Funct. Mater. 13(1):
85-88.
Pingel, P., Zen,
A., Neher, D., Lieberwirth,
I., Wegner, G., Allard, S. & Scherf, U. 2009. Unexpectedly high field-effect mobility of a soluble, low molecular
weight oligoquaterthiophene fraction with low polydispersity. Appl. Phys. A 95(1): 67-72.
Reimers, J.R. 2001. A practical method for the use of
curvilinear coordinates in calculations of normal-mode-projected displacements
and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 115(20): 9103-9109.
Sajoto, T.,
Tiwari, S.P., Li, H., Risko, C., Barlow, S., Zhang,
Q., Cho, J.Y., Brédas, J.L., Kippelen,
B. & Marder, S.R. 2012. Synthesis
and characterization of naphthalene diimide/ Diethynylbenzene copolymers. Polymer 53(5):
1072-1078.
Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R. & Barone, V. 2006. Geometries and properties of excited
states in the gas phase and in solution: Theory and application of a
time-dependent density functional theory polarizable continuum model. J.
Chem. Phys. 124(9): 094107-094115.
Schleyer, P.v.R. 2005.
Introduction: Delocalizationpi and sigma. Chem.
Rev. 105(10): 3433-3435.
Shinamura, S., Osaka, I.,
Miyazaki, E., Nakao, A., Yamagishi,
M., Takeya, J. & Takimiya, K. 2011. Linear- and angular-shaped naphthodithiophenes: Selective synthesis, properties, and
application to organic field-effect transistors. J. Am. Chem. Soc. 133(13):
5024-5035.
Stephens, P.J., Devlin,
F.J., Chabalowski, C.F. & Frisch, M.J. 1994. Ab initio calculation
of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45):
11623-11627.
Tang, C.W. & VanSlyke,
S.A. 1987. Organic electroluminescent diodes. Appl.
Phys. Lett. 51(12): 913-915.
Tsumura, A., Koezuka, H. & Ando, T. 1986. Macromolecular electronic device:
Field-effect transistor with a polythiophene thin
film. Appl. Phys. Lett. 49(18): 1210-1212.
Unni, K.N.N., Dabos-Seignon,
S. & Nunzi, J.M. 2006. Influence of the polymer
dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J. Mater. Sci. 41(2): 317-322.
Van Caillie, C.
& Amos, R.D. 2000. Geometric derivatives of density
functional theory excitation energies using gradient-corrected functionals. Chem. Phys. Lett. 317(1-2): 159-164.
Warshel, A. & Karplus, M. 1974. Calculation of Pi-Pi excited state conformations and vibronic structure of retinal and related molecules. J.
Am. Chem. Soc. 96(18): 5677-5689.
Wrackmeyer, M.S., Hein, M., Petrich, A., Meiss, J., Hummert, M., Riede, M.K. &
Leo, K. 2011.
Dicyanovinyl substituted oligothiophenes:
Thermal stability, mobility measurements, and performance in photovoltaic
devices. Sol. Energy Mater.
Sol. Cells 95(12): 3171-3175.
Wu, Q.X., Geng,
Y., Liao, Y., Tang, X.D., Yang, G.C. & Su, Z.M. 2012. Theoretical studies
of the effect of electron-withdrawing dicyanovinyl group on the electronic and charge-transport properties of fluorene-thiophene oligomers. Theor. Chem. Acc. 131(3):
1-9.
Wu, C.C., Hung, W.Y.,
Liu, T.L., Zhang, L.Z. & Luh, T.Y.
2003. Hole-transport properties
of a furan-containing oligoaryl.
J. Appl. Phys. 93(9): 5465-5471.
Yang, S.C., Graupner,
W., Guha, S., Puschnig,
P., Martin, C., Chandrasekhar, H.R., Chandrasekhar, M., Leising,
G., Ambrosch-Draxl, C. & Scherf,
U. 2000. Geometry-dependent electronic properties
of highly fluorescent conjugated molecules. Phys. Rev.
Lett. 85(11): 2388-2391.
Zhang, Y., Cai,
X., Bian, Y., Li, X. & Jiang, J. 2008. Heteroatom
substitution of oligothienoacenes: From good P-type
semiconductors to good ambipolar semiconductors for
organic field-effect transistors. J. Phys. Chem. C 112(13): 5148-5159.
Zwier, M.C., Shorb,
J.M. & Krueger, B.P. 2007. Hybrid molecular dynamics-quantum mechanics
simulations of solute spectral properties in the condensed phase: Evaluation of
simulation parameters. J. Comput. Chem. 28(9):
1572-1581.
*Pengarang untuk
surat-menyurat; email: rashidahmed@utm.my
|