Sains Malaysiana 43(6)(2014): 877–883
Ionic Liquid Incorporated PVC Based Polymer Electrolytes:
Electrical and Dielectric Properties
(Cecair Ionik Diperbadankan dengan Polimer Elektrolit Berasaskan PVC: Sifat Elektrik dan Dielektrik)
SITI KHATIJAH
DERAMAN1*, NOR
SABIRIN MOHAMED2& RI HANUM
YAHAYA SUBBAN1
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor
Malaysia
2Centre for Foundation Studies in Science,
University of Malaya, 50603 Kuala Lumpur
Malaysia
Diserahkan: 22 Mac 2013/Diterima: 2 Ogos 2013
ABSTRACT
This paper is focussed on conductivity
and dielectric properties of Poly (vinyl) chloride (PVC)-
ammonium triflate (NH4CF3SO3)
- butyltrimethyl ammonium bis
(trifluoromethyl sulfonyl)
imide (Bu3MeNTf2N)
ionic liquid, electrolyte system. The electrolyte is prepared by
solution cast technique. In this work, the sample containing 30
wt. % NH4CF3SO3 exhibits the highest room temperature
conductivity of 2.50 × 10-7
S cm-1. Ionic
liquid is added in various quantities to the 70 wt. % PVC-30
wt. % NH4CF3SO3
composition in order to enhance the conductivity of
the sample. The highest conductivity at room temperature is obtained
for the sample containing 15 wt. % Bu3MeNTf2N with a value of 1.56 × 10
-4 S cm-1.
The effects of ionic liquid addition on the
frequency dependent dielectric properties of PVC based
electrolytes is investigated by electrochemical impedance
spectroscopy (EIS) at room temperature. The values
of dielectric constant were found to increase with increasing conductivity
of the samples. Analysis of the ac conductivity data showed the
electrolytes to be of the non-Debye type.
Keywords: Dielectric properties; EIS; ionic liquid; non-Debye type
ABSTRAK
Kertas ini memberi tumpuan kepada kajian
konduktiviti dan dielektrik Poli (vinil) klorida (PVC)-
ammonium triflat (NH4CF3SO3)-
bis butyltrimethyl ammonium (Sulfonyl trifluoromethyl) imide (Bu3MeNTf2N), cecair ionik, sistem elektrolit.
Elektrolit telah disediakan dengan teknik cast penyelesaian. Dalam
penyelidikan ini, sampel yang mengandungi 30 %bt NH4CF3SO3 dipamerkan pada suhu bilik tertinggi
kekonduksian 2.50×10-7 S
cm-1. Cecair ionik kemudiannya
ditambah dalam kuantiti yang pelbagai 70 %bt PVC-30
%bt NH4CF3SO3
komposisi dalam usaha untuk meningkatkan kekonduksian
sampel. Kekonduksian tertinggi diperoleh pada suhu bilik 1.56×10-4 Scm-1
untuk sampel yang mengandungi 15 %bt Bu3MeNTf2N. Kesan sampingan cecair
ionik pada sifat frekuensi dielektrik bergantung kepada elektrolit
berasaskan PVC telah dikaji oleh spektroskopi impedans elektrokimia
(EIS)
dalam suhu bilik. Nilai pemalar dielektrik didapati telah meningkat
dengan peningkatan kekonduksian sampel. Analisis ac kekonduksian
data menunjukkan elektrolit adalah bukan dari jenis Debye.
Kata kunci: Cecair ionik; EIS; jenis bukan-Debye; sifat dielektrik
RUJUKAN
Adachi, K.
& Urakawa, O. 2002. Dielectric study of concentration fluctuations in
concentrated polymersolutions. J. Non-Cryst. Solids 307-310: 667-670.
Armstrong, R.D., Dickinson, T. & Wills, P.M. 1974. The A.C.
impedance of powdered and sintered solid ionic conductors. J. Electroanal Chem. and Interfacial Electrochem. 53(3): 389-405.
Baskaran, R., Selvasekarapandian, S., Kuwata,
S., Kawamura, J. & Hattori, T. 2006. Conductivity
and thermal studies of blend polymer
electrolytes based on PVAc–PMMA.
Solid State Ionics 177: 2679-2682.
Bennett,
M.D. & Leo, D.J. 2004. Ionic liquids as stable solvents for ionic polymer
transducers. Sensors and Actuators A: Physical 115(1): 79-90.
Cheng, H., Zhu, C., Huang, B., Lu, M. & Yang, Y. 2007. Synthesis and electrochemical characterization of PEO-based polymer
electrolytes with room temperature ionic liquids. Electrochim. Acta52: 5789-5794.
Doyle, M., Choi, S.K. & Proulx, G.
2000. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. Journal of the Electrochemical Society 147(1):
34-37.
Dutta, P.
& Biswas, S. 2002. Dielectric relaxation in polyaniline-polyvinyl alcohol composites. Mater.
Res. Bull. 37: 193-200.
Dyre, J.C. 1991. Some remarks on ac conduction in disordered solids. Non-Cryst. Solids 135: 219-226.
Fuller, J., Breda, A.C. & Carlin, R.T.1997. Ionic liquid-polymer gel electrolytes. J. Electrochem. Soc.144: L67-L70.
Hodge, I.M.,
Ingram, M.D. & West, A.R. 1976. Impedance and modulus
spectroscopy of polycrystalline solid electrolytes. J. Electroanal Chem. and Interfacial Electrochem. 74(2): 125-143.
Howell,
F.S., Bose, R.A., Macedo, P.B. & Moynihan, C.T.
1974. Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78: 639-648.
Hu, C., Changbao, Z., Bin, H., Mi, L. & Yong, Y. 2007. Synthesis and electrochemical characterization of PEO-based polymer
electrolytes with room temperature ionic liquids. Electrochimica Acta52: 5789-5794.
Isasi, J., Lopez, M.L., Veiga, M.L., Ruiz-Hitzky, E. & Pico, C. 1995. Structural characterization
and electrical properties of a novel defect pyrochlore. J. Solid State Chem. 116: 290-295.
Kyritsis, A., Pissis, P. & Grammatikakis, J. 1995. Dielectric
relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. Part B: Polym. Phys. 33: 1737-1750.
MacCallum, J.R. & Vincent, C.A. 1989. Polymer
Electrolyte Reviews. London: Elsevier.
Md Abu, b.H.S., Kaneko, T., Noda, A. & Watanabe, M. 2005. Ion gels
prepared by in situ radical polymerization of vinyl monomers in an ionic
liquid and their characterization as polymer electrolytes. J. Am.
Chem. Soc. 127(13): 4976-4983.
Mishra,
R. & Rao, K.J. 1998. Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol)
blends. Solid State Ionics 106: 113-127.
Noda, A., Hayamizu, K. & Watanabe, M. 2001. Pulsed-gradient
spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic
conductivity of non-chloroaluminate room-temperature
ionic liquids. J. Phys. Chem. B 105(20): 4603-4610.
Noda, A. &
Watanabe, M. 2000. Highly conductive polymer electrolytes prepared by in situ polymerization of
vinyl monomers in room temperature molten salts. Electrochim. Acta45: 1265-1270.
Ohno, H., Yoshizawa,
M. & Ogihara, W. 2004. Development
of new class of ion conductive polymers based on ionic liquids. Electrochimica Acta50(2):
255-261.
Padmasree, K., Kanchan,
D.K. & Kulkarni, A.R. 2006. Impedance and modulus studies of the solid
electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)],
where 1 ≤x/y ≤ 3. Solid State Ionics 177(5-6): 475-482.
Pradan, D.K., Choudhary,
R.N.P. & Samantaray, B.K. 2009. Studies of
dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater. Chem. Phys. 115: 557-561.
Ramesh, S. & Arof,
A.K. 2001. Ionic conductivity studies of plasticized poly(vinyl
chloride) polymer electrolytes. Mater. Sci. Eng. B 85: 11-15.
Richert, R. & Wagner, H. 1998. The
dielectric modulus: relaxation versus retardation. Solid State Ionics 105(1-4):
167-173.
Shastry, M.C.R. & Rao, K.J. 1991. Ac
conductivity and dielectric relaxation studies in AgI-based
fast ion conducting glasses. Solid State Ionics 44(3-4): 187-198.
Shin, J.H., Henderson, W.A. & Passerini, S. 2005. PEO-based polymer electrolytes with
ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc. 152(5): A978-A983.
Shin, J., Henderson, W.A. & Passerini, S. 2003. Ionic liquids to the
rescue? Overcoming the ionic conductivity limitations of polymer
electrolytes. Electrochem. Commun. 5(12): 1016-1020.
Shobukawa, H.,Tozuda, H., Md Abu, b.H.S. & Watanabe, M. 2005. Ion
transport properties of lithium ionic liquids and their ion gels. Electrochim. Acta50(19):
3872-3877.
Stallworth, P.E., Fontanella, J.J., Wintersgill,
M.C., Scheidler, C.D., Immel,
J.J., Greenbaum, S.G. & Gozdz,
A.S. 1999. NMR, DSC
and high pressure electrical conductivity studies of liquid and hybrid
electrolytes. J. Power Sources 81-82: 739-747.
Sun, J., MacFarlane,
D.R. & Forsyth, M. 2002. Lithium polyelectrolyte–ionic liquid systems. Solid
State Ionics 147: 333-339.
Tarascon, J.M. & Armand, M.
2001. Issues and challenges facing rechargeable lithium batteries. Nature 414: 359-367.
Tokuda, H., Hayamizu,
K., Ishii, K., Md Abu, b.H.S. & Watanabe, M. 2004. Physicochemical
properties and structures of room temperature ionic liquids. 1. variation of anionic species. J. Phys. Chem. B 108(42):
16593-16600.
Venkateswarlu, M., Reddy, K.N, Rambabu, B. & Satyanarayana,
N. 2000. A.c. conductivity and dielectric studies of silver-based
fast ion conducting glass system. Solid State Ionics 127(1-2): 177-184.
Yamamoto, T., Inami, M. & Kanbara, T. 1994. Preparation and properties of polymer
solid electrolytes using poly(vinyl alcohol) and
thermally resistive poly[arylene(1,3-
imidazolidine-2,4,5-trione-1,3-diyl)] as matrix polymers. Chem. Mater.
6(1): 44-50.
*Pengarang untuk surat-menyurat;
email: rihanum43@salam.uitm.edu.my
|