Sains Malaysiana 44(6)(2015):
779–785
pH Sensitive Hydrogel Based on Poly(Acrylic
Acid) and Cellulose Nanocrystals
(Hidrogel Sensitif terhadap pH Berasaskan Poli(Asid Akrilik) Diperkuatkan Selulosa Nanohablur)
LIM SZE LIM, ISHAK AHMAD* & AZWAN MAT LAZIM
Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 15 Januari
2014/Diterima: 15 November 2014
ABSTRACT
The purpose of this study was to
produce a novel pH sensitive hydrogel with superior thermal stability, composed
of poly(acrylic acid) (PAA)
and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber
through a series of alkali and bleaching treatments followed by acid
hydrolysis. PAA was then subjected to
chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide)
in CNC suspension. The mixture
was casted onto petri dish to obtain disc shape hydrogel. PAA/cellulose
hydrogel with the same composition ratio were also prepared as control. The
effect of reaction conditions such as the ratio of PAA and CNC on
the swelling behavior of the hydrogel obtained towards pH was studied. The
obtained hydrogel was further subjected to different tests such as
thermogravimetric analysis (TGA)
to study the thermal behavior, Fourier transform infrared for functional group
identification and swelling test for swelling behavior at different pH. The
cross-linking of PAA was
verified with FTIR with the absence of
C=C double bond. In TGA test, PAA/CNC hydrogel showed
significantly higher thermal stability compared with pure PAA hydrogel. The hydrogel obtained showed excellent pH sensitivity
and experienced maximum swelling at pH7. The PAA/CNC hydrogel can be developed further as drug carrier.
Keywords: Acrylic acid; cellulose
nanocrystals; hydrogel; swelling behavior
ABSTRAK
Objektif kajian ini adalah untuk
menghasilkan hidrogel poli(asid akrilik) (PAA) diperkuatkan selulosa
nanohablur (CNC) yang bukan sahaja
sensitif terhadap rangsangan pH tetapi juga mempunyai sifat terma yang baik. CNC diekstrak daripada
serabut kenaf melalui rawatan alkali dan rawatan pelunturan dan diikuti
hidrolisis asid. Asid akrilik (AA)
ditautsilangkan dengan menggunakan agen tautsilang (N,N-metilenabisakrilamid)
dalam ampaian CNC. Campuran
kemudian dituang ke dalam piring petri panas untuk mendapatkan hidrogel yang
berbentuk cakera. Hidrogel PAA/selulosa
dengan komposisi yang sama juga telah dihasilkan
sebagai kawalan. Kesan parameter tindak balas seperti nisbah PAA dan CNC terhadap sifat pembengkakan hidrogel telah dikaji. Hidrogel yang dihasilkan diciri dengan analisis termogravimetri (TGA) untuk mengkaji sifat terma
hidrogel yang dihasilkan. Transformasi Fourier
inframerah pula digunakan untuk mengenal pasti kumpulan berfungsi hidrogel. Selain itu, ujian pembengkakan juga telah dijalankan untuk
mengkaji sifat pembengkakan hidrogel pada pH yang berbeza. Kehilangan
puncak C=C membuktikan bahawa asid akrilik telah berjaya ditautsilangkan kepada poli(asid akrilik). Dalam analisis TGA pula, hidrogel PAA/CNC menunjukkan kestabilan terma yang lebih baik berbanding dengan
hidrogel PAA. Hidrogel yang dihasilkan adalah sensitif terhadap perubahan pH dan
mencapai pembengkakan maksimum pada pH7. Hidrogel PAA/CNC mempunyai potensi untuk
dijadikan pembawa ubat secara terkawal.
Kata
kunci: Asid akrilik; hidrogel; selulosa nanohablur; sifat pembengkakan
RUJUKAN
Akala, E.O.,
Kopečková, P. & Kopeček, J. 1998. Novel
pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials 19(11-12): 1037-1047.
Alemdar, A. & Sain, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical
properties. Composites Science and Technology 68(2): 557-565.
Anirudhan,
T.S. & Rejeena, S.R. 2012. Poly(acrylic
acid)- modified poly(glycidylmethacrylate)-grafted nanocellulose
as matrices for the adsorption of lysozyme from aqueous solutions.
Chemical Engineering Journal 187: 150-159.
Arunbabu, D., Shahsavan, H., Zhang, W. & Zhao, B. 2012. Poly(AAc-co-MBA) hydrogel films: Adhesive and mechanical
properties in aqueous medium. The Journal of Physical Chemistry B 117(1):
441-449.
Bardajee, G.R., Pourjavadi, A., Ghavami, S., Soleyman, R. &
Jafarpour, F. 2011. UV-prepared salep-based nanoporous hydrogel for
controlled release of tetracycline hydrochloride in colon. Journal of
Photochemistry and Photobiology B: Biology 102(3): 232-240.
Bayramgil,
N.P. 2008. Thermal degradation of [poly(N-vinylimidazole)–polyacrylic
acid] interpolymer complexes. Polymer Degradation and Stability 93(8):
1504-1509.
Bera, A., Misra, R.K. & Singh, S.K. 2013. Structural and behavioral characteristics of radiolytically synthesized
polyacrylic acid–polyacrylonitrile copolymeric hydrogels.
Radiation Physics and Chemistry 91: 180-185.
Bondeson, D., Mathew, A. & Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline
cellulose by acid hydrolysis. Cellulose 13(2): 171-180.
Censi, R.,
Schuurman, W., Malda, J., Di Dato, G., Burgisser, P.E., Dhert, W.J.A., Van
Nostrum, C.F., Di Martino, P., Vermonden, T. & Hennink, W.E. 2011. A
printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG
hydrogel for tissue engineering. Advanced Functional Materials 21(10):
1833-1842.
Cha, R., He, Z. & Ni, Y. 2012. Preparation and characterization of thermal/pH-sensitive hydrogel
from carboxylated nanocrystalline cellulose. Carbohydrate Polymers 88(2):
713-718.
Chang, M., Chung, M., Lee, B.S. & Kwak, C.H. 2006. Structure,
magnetic and ion-exchange properties of self-assembled triaza-copper(II)-oxalate hybrides having nanoscale one-dimensional
channel. Journal of Nanoscience and Nanotechnology 6(11): 3338-3342.
Da Silva, R. & Ganzarolli de Oliveira, M. 2007. Effect of
the cross-linking degree on the morphology of poly(NIPAAm-co-AAc)
hydrogels. Polymer 48(14): 4114-4122.
Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O. & Pasquini,
D. 2013. Extraction and characterization of cellulose
nanocrystals from agro-industrial residue - Soy hulls. Industrial
Crops and Products 42: 480-488.
Habibi, Y.,
Lucia, L.A. & Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry,
self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.
Hellio, D. & Djabourov, M. 2006. Physically
and chemically crosslinked gelatin gels. Macromolecular Symposia 241(1):
23-27.
Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P. &
Pasquini, D. 2013. Valorization of an agro-industrial waste, mango
seed, by the extraction and characterization of its cellulose nanocrystals.
Journal of Environmental Management 121: 202-209.
Huang, Y.,
Lu, J. & Xiao, C. 2007. Thermal and mechanical properties of cationic guar
gum/poly(acrylic acid) hydrogel membranes. Polymer
Degradation and Stability 92(6): 1072-1081.
Janković, B., Adnađević, B. & Jovanović,
J. 2007. Application of model-fitting and model-free kinetics to the study
of non-isothermal dehydration of equilibrium swollen poly (acrylic acid)
hydrogel: Thermogravimetric analysis. Thermochimica Acta 452(2):
106-115.
Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction,
preparation and characterization of cellulose fibres and nanocrystals from rice
husk. Industrial Crops and Products 37(1): 93-99.
Kargarzadeh,
H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R.
2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal
stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.
Kim, S.J., Kim, H., Park, S.J.
& Kim, S.I. 2004. Shape change characteristics of polymer
hydrogel based on polyacrylic acid/poly(vinyl sulfonic
acid) in electric fields. Sensors and Actuators A: Physical 115(1):
146-150.
Kim,
S.J., Lee, K.J., Lee, S.M., Kim, I.Y. & Kim, S.I. 2004. Water behavior of poly(acrylic acid)/poly (acrylonitrile)
semi-interpenetrating polymer network hydrogels. High Performance Polymers 16(4):
625-635.
Laftah, W.A. &
Hashim, S. 2013. The influence of plant natural fibers on
swelling behavior of polymer hydrogels. Journal of Composite
Materials 48(5): 555-569.
Liu,
H., Wang, D., Shang, S. & Song, Z. 2011. Synthesis and
characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose
nanocrystals nanocomposites. Carbohydrate Polymers 83(1): 38-43.
Mohd
Amin, M.C.I., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synthesis
and characterization of thermo- and pH-responsive bacterial cellulose/acrylic
acid hydrogels for drug delivery. Carbohydrate Polymers 88(2):
465-473.
Needleman, I.G. &
Smales, F.C. 1995. In vitro assessment of bioadhesion
for periodontal and buccal drug delivery. Biomaterials 16(8):
617-624.
Oliveira
Taipina, M., Ferrarezi, M., Yoshida, I. & de Gonçalves, M. 2013. Surface
modification of cotton nanocrystals with a silane agent. Cellulose 20(1):
217-226.
Rahimi, N., Molin, D.G.,
Cleij, T.J., van Zandvoort, M.A. & Post, M.J.
2012. Electrosensitive polyacrylic acid/fibrin hydrogel facilitates cell
seeding and alignment. Biomacromolecules 13(5): 1448-1457.
Richard,
B., Quilès, F., Carteret, C. & Brendel, O. 2014. Infrared spectroscopy
and multivariate analysis to appraise α-cellulose extracted from wood for
stable carbon isotope measurements. Chemical Geology 381(0): 168-179.
Saha,
P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D. & Adhikari, B. 2010. Enhancement
of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology 101(9): 3182-3187.
Sahiner,
N. 2013. Soft and flexible hydrogel templates of different sizes and various
functionalities for metal nanoparticle preparation and their use in catalysis. Progress
in Polymer Science 38(9): 1329-1356.
Sawpan, M.A., Pickering,
K.L. & Fernyhough, A. 2011. Effect of fibre treatments on interfacial shear
strength of hemp fibre reinforced polylactide and unsaturated polyester
composites. Composites Part A: Applied Science and Manufacturing 42(9):
1189-1196.
Scherzer,
T., Beckert, A., Langguth, H., Rummel, S. & Mehnert, R. 1997. Electron beam curing of
methacrylated gelatin. I. Dependence of the degree of crosslinking on the
irradiation dose. Journal of Applied Polymer Science 63(10): 1303-1312.
Serpe, M.J., Jones, C.D.
& Lyon, L.A. 2003. Layer-by-layer deposition of
thermoresponsive microgel thin films. Langmuir 19(21): 8759-8764.
Sharifi, S., Blanquer,
S.B.G., van Kooten, T.G. & Grijpma, D.W. 2012. Biodegradable nanocomposite
hydrogel structures with enhanced mechanical properties prepared by
photo-crosslinking solutions of poly(trimethylene
carbonate)– poly(ethylene glycol)–poly(trimethylene carbonate)
macromonomers and nanoclay particles. Acta Biomaterialia 8(12):
4233-4243.
Sheltami, R.M.,
Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of
cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate
Polymers 88(2): 772-779.
Shirsath,
S.R., Patil, A.P., Patil, R., Naik, J.B., Gogate, P.R. & Sonawane, S.H.
2013. Removal of Brilliant Green from wastewater using conventional and
ultrasonically prepared poly(acrylic acid) hydrogel
loaded with kaolin clay: A comparative study. Ultrasonics Sonochemistry 20(3):
914- 923.
Sorbara, L., Jones, L.
& Williams-Lyn, D. 2009. Contact lens induced papillary conjunctivitis with
silicone hydrogel lenses. Contact Lens and Anterior Eye 32(2): 93-96.
Spagnol,
C., Rodrigues, F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. &
Muniz, E.C. 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and
chitosan-graft-poly(acrylic acid). Carbohydrate
Polymers 87(3): 2038-2045.
Varga,
Z., Molnar, K., Torma, V. & Zrinyi, M. 2010. Kinetics of volume
change of poly(succinimide) gels during hydrolysis and
swelling. Physical Chemistry Chemical Physics 12(39): 12670-12675.
Wang,
W., Deng, L., Liu, S., Li, X., Zhao, X., Hu, R., Zhang, J., Han, H. & Dong,
A. 2012. Adjustable degradation and drug release of a thermosensitive hydrogel based on
a pendant cyclic ether modified poly(ε-caprolactone)
and poly(ethylene glycol)co-polymer. Acta Biomaterialia 8(11):
3963-3973.
Wen,
O.H., Kuroda, S.I. & Kubota, H. 2001. Temperature-responsive
character of acrylic acid and N-isopropylacrylamide binary monomers-grafted
celluloses. European Polymer Journal 37(4): 807-813.
Wu, N. & Li, Z.
2013. Synthesis and characterization of poly(HEA/MALA)
hydrogel and its application in removal of heavy metal ions from water. Chemical
Engineering Journal 215-216(0): 894-902.
Yuk,
S., Cho, S. & Lee, H. 1992. Electric current-sensitive
drug delivery systems using sodium alginate/polyacrylic acid composites. Pharmaceutical Research 9(7): 955-957.
Zhou, Y., Zhao, Y.,
Wang, L., Xu, L., Zhai, M. & Wei, S. 2012. Radiation
synthesis and characterization of nanosilver/ gelatin/carboxymethyl chitosan
hydrogel. Radiation Physics and Chemistry 81(5): 553-560.
Zuidema, J.M., Pap,
M.M., Jaroch, D.B., Morrison, F.A. & Gilbert, R.J. 2011. Fabrication and
characterization of tunable polysaccharide hydrogel blends for neural repair. Acta
Biomaterialia 7(4): 1634-1643.
*Pengarang untuk surat-menyurat; email: gading@ukm.edu.my
|