Sains Malaysiana 44(6)(2015): 827–834

 

Removal of Methylene Blue Dye in Aqueous Solution by Sorption on

a Bacterial-g-Poly-(Acrylic Acid) Polymer Network Hydrogel

(Penyingkiran Pewarna Metilena Biru di dalam Larutan Akueus dengan Serapan oleh Polimer

Hidrogel Berasaskan Rangkaian Selulosa Bakteria-g-Poli-(Asid Akrilik))

 

ADIL HAKAM1, I. ABDUL RAHMAN2, M. SUZEREN M. JAMIL1, RIZAFIZAH OTHAMAN1,

M.C.I. MOHAMAD AMIN3 & AZWAN MAT LAZIM1*

 

1Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,

Selangor Darul Ehsan, Malaysia

 

2Laboratory of Gamma Radiation Instrument, Science Nuclear Program, School of Applied Physics

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Malaysia

 

Diserahkan: 15 Januari 2014/Diterima: 15 November 2014

 

 

ABSTRACT

In this study, Bacterial cellulose (BC) grafted with Acrylic acid (AA) was prepared using Co60 γ-rays source (30 KGy). Although many samples were prepared, BC: AA with ratio of 1:1 labelled as A1 and 2:1 labelled as A2 gave the most significant results. Hence these particular ratios have been selected and further investigated. AA was proven grafted onto BC by using ATR-FTIR due to the absent of C-O stretching (1040 cm-1) in both hydrogels. The SEM image of both hydrogels samples showed highly porosity networks structure have been produced. The physical properties of the hydrogels such as equilibrium water content (%) and swelling ratio (%) in different pH buffer solution were measured. It was found that the equilibrium water content (%) of A1 was 93.10% while A2 was 74.83%, respectively. The results indicated that the equilibrium water content (%) increased by gaining the AA concentration. At pH10, the A2 swelling ratio (%) was two folded with 3350% in comparison with the A1. For the removal of methylene blue (MB) from aqueous solution, the results from the UV-VIS spectroscopy demonstrated that the A2 sample hydrogel was also an effective absorbent material.

 

Keywords: Bacterial cellulose; gamma radiation; hydrogel; methylene blue

 

ABSTRAK

Dalam kajian ini, hidrogel berasaskan selulosa bakteria telah dihasilkan dengan mencangkukkan molekul asid akrilik (AA) pada jaringan selulosa bakteria (SB). Teknik pempolimerkan yang digunakan di dalam kajian ini adalah pempolimeran sinaran radiasi gama (sumber Co60, dos: 30 KGy). Walaupun banyak sampel disediakan, sampel hidrogel dengan nisbah SB: AA, 1:1 dilabel sebagai A1 dan 2:1 sebagai A2 memberikan keputusan yang paling baik. Oleh itu, kedua-dua sampel tersebut dikaji dengan lebih lanjut. AA telah terbukti ditambah kepada SB dengan menggunakan ATR-FTIR kerana regangan CO (1040 cm-1) dalam kedua-dua hidrogel telah disingkirkan. Imej SEM bagi kedua-dua sampel hidrogel menunjukkan struktur yang mempunyai keporosan yang tinggi. Selain itu, sifat-sifat fizikal bagi kedua-dua sampel seperti keputusan ujian kandungan air dalam keseimbangan (%) dan ujian pembengkakan dalam larutan penimbal dengan pH yang berbeza dikaji. Keputusan ujian kandungan air dalam keseimbangan (%) mendapati sampel A1 mencatatkan peratusan sebanyak 93.10% manakala sampel A2 mencatatkan peratusan sebanyak 74.83%. Hal ini membuktikan bahawa kandungan AA yang tinggi bagi setiap sampel akan meningkatkan peratusan kandungan air dalam keseimbangan. Dalam ujian pembengkakan dalam larutan penimbal dengan pH yang berbeza, keputusan menunjukkan kedua-dua sampel mempunyai kandungan serapan yang tinggi dalam larutan penimbal pH10. Sampel A2 mempunyai peratusan sebanyak 3350% berbanding sampel A1. Setelah kedua-dua sampel menjalani ujian penyingkiran pewarna metilena biru menggunakan spektroskopi UV-VIS, keputusan menunjukkan bahawa sampel A2 merupakan sampel hidrogel yang mampu menyerap pewarna metilena biru daripada larutan akueus dengan baik berbanding sampel A1.

 

Kata kunci: Hidrogel; metilena biru; selulosa bakteria; sinaran gama

RUJUKAN

Abdel-Halim, E.S. 2013. Preparation of starch/poly(N,N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions. Reactive and Functional Polymers 73(11): 1531-1536.

Amin, M.C.I.M., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synyhesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88: 465-473.

An, J.C. 2010. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation. Journal of Industrial and Engineering Chemistry 16(5): 657-661.

Campbell, S.B. & Hoare, T. 2014. Externally addressable hydrogel nanocomposites for biomedical applications. Current Opinion in Chemical Engineering 4(0): 1-10.

Cherian, B., Leao, A., Souza, S., Thomas, S., Pothan, L. & Kottaisamy, M. 2011. Cellulose nanocomposites for high-performance applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites, edited by Kalia, S., Kaith, B.S. & Kaur, I. Springer Berlin Heidelberg. pp. 539-587.

Defader, N.C., Akter, T., Haque, M.E., Swapna, S.P., Sadia Islam & Huq, D. 2012. Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation. African Journal of Biotechnology 11(66): 13049-13057.

Ding, F., Nie, Z., Deng, H., Xiao, L., Du, Y. & Shi, X. 2013. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydrate Polymers 98(2): 1547-1552.

Endo, T., Ikeda, R., Yanagida, Y. & Hatsuzawa, T. 2008. Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Analytica Chimica Acta 611(2): 205-211.

Gibas, I. & Janik, H. 2010. Review: Synthetic polymer hydrogels for biomedical applications. Chemistry & Chemical Technology 4(4): 298-304.

Hu, X., Zhou, J., Zhang, N., Tan, H. & Gao, C. 2008. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. Journal of the Mechanical Behavior of Biomedical Materials 1(4): 352-359.

Huang, Z., Wu, Q., Liu, S., Liu, T. & Zhang, B. 2013. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydrate Polymers 97(2): 496-501.

Jaiswal, M., Lale, S., Ramesh, N.G. & Koul, V. 2013. Synthesis and characterization of positively charged interpenetrating double-network hydrogel matrices for biomedical applications. Reactive and Functional Polymers 73(11): 1493-1499.

Jeon, Y.S., Lei, J. & Kim, J.H. 2008. Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry 14: 726-731.

Johari, N.S., Ahmad, I. & Halib, N. 2012. Comparison study of hydrogels properties synthesized with micro- and nano- size bacterial cellulose particels extracted from Nata de coco. Chemical and Biochemical Engineering Quarterly 26(4): 399-404.

Kentaro, A. & Hiroyuki, Y. 2012. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6): 1907-1912.

Koupai, J.A., Eslamian, S.S. & Kazemi, J.A. 2008. Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrology & Hydrobiology 8(1): 67-75.

La, Y.H., McCloskey, B.D., Sooriyakumaran, R., Vora, A., Freeman, B., Nassar, M., Hedrick, J., Nelson, A. & Allen, R. 2011. Bifunctional hydrogel coatings for water purification membranes: Improved fouling resistance and antimicrobial activity. Journal of Membrane Science 372(1-2): 285-291.

Lee, K.Y., Quero, F., Blaker, J., Hill, C., Eichhorn, S. & Bismarck, A. 2011. Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3): 595-605.

Liu, A., Chen, X., Wang, K., Wei, N., Sun, Z., Lin, X., Chen, Y. & Du, M. 2011. Electrochemical DNA biosensor based on aldehyde-agarose hydrogel modified glassy carbon electrode for detection of PML/RARa fusion gene. Sensors and Actuators B: Chemical 160(1): 1458-1463.

Masteiková, R., Chalupová, Z. & Šklubalová, Z. 2003. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina 39(2): 19-24.

Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M.A. & Bonakdar, S. 2013. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials Science and Engineering: C 33(8): 4786-4794.

Murthy, P.S.K., Murali Mohan, Y., Varaprasad, K., Sreedhar, B. & Mohana Raju, K. 2008. First successful design of semi- IPN hydrogel-silver nanocomposites: A facile approach for antibacterial application. Journal of Colloid and Interface Science 318(2): 217-224.

Narjary, B., Aggarwal, P., Singh, A., Chakraborty, D. & Singh, R. 2012. Water availability in different soils in relation to hydrogel application. Geoderma 187-188(0): 94-101.

Nasef, M.M. & Güven, O. 2006. Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Progress in Polymer Science 37(12): 1597-1656.

Ng, S.S., Su, K., Li, C., Chan-Park, M.B., Wang, D.A. & Chan, V. 2012. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta Biomaterialia 8(1): 244-252.

Ningmei, W. & Zhengkui, L. 2013. Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chemical Engineering Journal 215-216(0): 894-902.

Nurettin, S., Ozgur, O., Sema, E., Yakup, B., Senol, K. & Nahit, A. 2010. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination 260(1-3): 57-64.

Oz, M., Lorke, D.E. & Petroianu, G.A. 2009. Methylene blue and Alzheimer’s disease. Biochemical Pharmacology 78(8): 927-932.

Ozgur, O., Sema, E., Yakup, B., Nahit, A. & Nurettin, S. 2009. Removal of toxic metal ions with magnetic hydrogels. Water Research 43(17): 4403-4411.

Pourjavadi, A., Doulabi, M., Soleyman, R., Sharif, S. & Eghtesadi, S.A. 2012. Synthesis and characterization of a novel (salep phosphate)-based hydrogel as a carrier matrix for fertilizer release. Reactive and Functional Polymers 72(10): 667-672.

Qiu, Y. & Park, K. 2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 64, Supplement(0): 49-60.

Rahman, M.A., Amin, S.M.R. & Alam, A.M.S. 2012. Removal of methylene blue from waste water using activated carbon prepared from rice husk. Journal Science of University Dhaka 60(2): 185-189.

Sáfrány, Á., Beiler, B. & Vincze, Á. 2010. Radiation polymerization and crosslinking: A viable alternative for synthesis of porous functional polymers. Radiation Physics and Chemistry 79(4): 462-466.

Saha, N., Saarai, A., Roy, N., Kitano, T. & Saha, P. 2011. Polymeric biomaterial based hydrogels for biomedical applications. Journal of Biomaterials and Nanobiotechnology 2: 85-90.

Sahera, M., Ghada, M. & Manal, T. 2012. Synthesis and characterization of poly(acrylic acid)-<i>g -sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. Monatshefte für Chemie / Chemical Monthly 1-9.

Sahiner, N., Ozay, O., Aktas, N., Blake, D.A. & John, V.T. 2011. Arsenic (V) removal with modifiable bulk and nano p(4- vinylpyridine)-based hydrogels: The effect of hydrogel sizes and quarternization agents. Desalination 279(1-3): 344-352.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102(15): 7237-7243.

Sand, A., Mishra, D.K., Pandey, V.S., Mishra, M.M. & Behari, K. 2012. Synthesis of graft copolymer (CgOH-g-AGA): Physicochemical properties, characterization and application. Carbohydrate Polymers 90(2): 901-907.

Sannino, A., Demitri, C. & Madaghiele, M. 2009. Biodegradable cellulose-based hydrogels: Design and applications. Materials 2(2): 353-373.

Spagnol, C., Rodrigues, F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. & Muniz, E.C. 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydrate Polymers 87(3): 2038-2045.

Tamura, H., Furuike, T., Nair, S.V. & Jayakumar, R. 2011. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers 84(2): 820-824.

Wang, N. & Wu, X.S. 1998. A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. International Journal of Pharmaceutics 166(1): 1-14.

Wang, X., Ye, G. & Wang, X. 2014. Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sensors and Actuators B: Chemical 193(0): 413-419.

Wang, Y., Huang, C.J., Jonas, U., Wei, T., Dostalek, J. & Knoll, W. 2010. Biosensor based on hydrogel optical waveguide spectroscopy. Biosensors and Bioelectronics 25(7): 1663- 1668.

Wendler, F., Schulze, T., Ciechanska, D., Wesolowska, E., Wawro, D., Meister, F., Budtova, T. & Liebner, F. 2013. Cellulose products from solutions: Film, fibres and aerogels. In The European Polysaccharide Network of Excellence (EPNOE), edited by Navard, P. Vienna: Springer. pp. 153-185.

Zhang, L., Zheng, G.J., Guo, Y.T., Zhou, L., Du, J. & He, H. 2014. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pacific Journal of Tropical Medicine 7(2): 136-140.

Zhong, K., Lin, Z.T., Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y. & Liao, Z.W. 2013. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers 92(2): 1367-1376.

 

*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my

 

 

 

sebelumnya