Sains Malaysiana 44(6)(2015):
827–834
Removal of Methylene Blue Dye in Aqueous
Solution by Sorption on
a Bacterial-g-Poly-(Acrylic
Acid) Polymer Network Hydrogel
(Penyingkiran Pewarna Metilena Biru di dalam
Larutan Akueus dengan Serapan oleh Polimer
Hidrogel Berasaskan Rangkaian Selulosa
Bakteria-g-Poli-(Asid Akrilik))
ADIL HAKAM1, I. ABDUL RAHMAN2, M. SUZEREN M. JAMIL1, RIZAFIZAH OTHAMAN1,
M.C.I. MOHAMAD AMIN3 & AZWAN MAT LAZIM1*
1Faculty Science and
Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor
Darul Ehsan, Malaysia
2Laboratory of Gamma
Radiation Instrument, Science Nuclear Program, School of Applied Physics
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
3Faculty of Pharmacy,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur, Malaysia
Diserahkan: 15 Januari
2014/Diterima: 15 November 2014
ABSTRACT
In this study, Bacterial cellulose (BC)
grafted with Acrylic acid (AA) was prepared using Co60 γ-rays
source (30 KGy). Although many samples were prepared, BC: AA with
ratio of 1:1 labelled as A1 and 2:1 labelled as A2 gave the most significant
results. Hence these particular ratios have been selected and further
investigated. AA was proven grafted onto BC by
using ATR-FTIR due to the absent of C-O stretching (1040 cm-1)
in both hydrogels. The SEM image of both hydrogels samples
showed highly porosity networks structure have been
produced. The physical properties of the hydrogels such as equilibrium water
content (%) and swelling ratio (%) in different pH buffer solution were
measured. It was found that the equilibrium water content (%) of A1 was 93.10%
while A2 was 74.83%, respectively. The results indicated that the equilibrium
water content (%) increased by gaining the AA concentration.
At pH10, the A2 swelling ratio (%) was two folded with 3350% in comparison with
the A1. For the removal of methylene blue (MB)
from aqueous solution, the results from the UV-VIS spectroscopy
demonstrated that the A2 sample hydrogel was also an effective absorbent
material.
Keywords: Bacterial cellulose; gamma
radiation; hydrogel; methylene blue
ABSTRAK
Dalam kajian
ini, hidrogel berasaskan selulosa bakteria telah dihasilkan dengan
mencangkukkan molekul asid akrilik (AA) pada jaringan selulosa
bakteria (SB). Teknik pempolimerkan yang digunakan
di dalam kajian ini adalah pempolimeran sinaran radiasi gama (sumber Co60, dos: 30 KGy). Walaupun banyak sampel disediakan, sampel hidrogel
dengan nisbah SB: AA, 1:1 dilabel sebagai A1 dan 2:1
sebagai A2 memberikan keputusan yang paling baik. Oleh itu,
kedua-dua sampel tersebut dikaji dengan lebih lanjut. AA telah
terbukti ditambah kepada SB dengan menggunakan ATR-FTIR kerana
regangan CO (1040 cm-1) dalam kedua-dua hidrogel telah
disingkirkan. Imej SEM bagi
kedua-dua sampel hidrogel menunjukkan struktur yang mempunyai keporosan yang
tinggi. Selain itu, sifat-sifat fizikal bagi kedua-dua sampel seperti
keputusan ujian kandungan air dalam keseimbangan (%) dan ujian pembengkakan
dalam larutan penimbal dengan pH yang berbeza dikaji. Keputusan ujian kandungan
air dalam keseimbangan (%) mendapati sampel A1 mencatatkan peratusan sebanyak
93.10% manakala sampel A2 mencatatkan peratusan sebanyak 74.83%. Hal ini
membuktikan bahawa kandungan AA yang tinggi bagi setiap
sampel akan meningkatkan peratusan kandungan air dalam
keseimbangan. Dalam ujian pembengkakan dalam larutan penimbal
dengan pH yang berbeza, keputusan menunjukkan kedua-dua sampel mempunyai
kandungan serapan yang tinggi dalam larutan penimbal pH10. Sampel A2 mempunyai peratusan sebanyak 3350% berbanding sampel A1. Setelah kedua-dua sampel menjalani ujian penyingkiran pewarna metilena biru
menggunakan spektroskopi UV-VIS, keputusan menunjukkan bahawa
sampel A2 merupakan sampel hidrogel yang mampu menyerap pewarna metilena biru
daripada larutan akueus dengan baik berbanding sampel A1.
Kata
kunci: Hidrogel; metilena biru; selulosa bakteria; sinaran gama
RUJUKAN
Abdel-Halim, E.S. 2013. Preparation of starch/poly(N,N-Diethylaminoethyl methacrylate) hydrogel and its
use in dye removal from aqueous solutions. Reactive and Functional Polymers 73(11):
1531-1536.
Amin, M.C.I.M., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synyhesis
and characterization of thermo- and pH-responsive bacterial cellulose/acrylic
acid hydrogels for drug delivery. Carbohydrate Polymers 88: 465-473.
An, J.C. 2010. Synthesis of the
combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing
radiation. Journal of Industrial and Engineering Chemistry 16(5):
657-661.
Campbell, S.B. & Hoare, T. 2014. Externally addressable hydrogel nanocomposites for biomedical
applications. Current Opinion in Chemical Engineering 4(0): 1-10.
Cherian, B., Leao, A., Souza, S., Thomas, S., Pothan, L. &
Kottaisamy, M. 2011. Cellulose nanocomposites for
high-performance applications. In Cellulose Fibers: Bio- and
Nano-Polymer Composites, edited by Kalia, S., Kaith, B.S. & Kaur, I.
Springer Berlin Heidelberg. pp. 539-587.
Defader, N.C., Akter, T., Haque, M.E., Swapna, S.P., Sadia Islam
& Huq, D. 2012. Effect of acrylic acid on the
properties of polyvinylpyrrolidone hydrogel prepared by the application of
gamma radiation. African Journal of Biotechnology 11(66):
13049-13057.
Ding, F.,
Nie, Z., Deng, H., Xiao, L., Du, Y. & Shi, X. 2013. Antibacterial
hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydrate Polymers 98(2): 1547-1552.
Endo, T., Ikeda, R., Yanagida, Y. & Hatsuzawa, T. 2008. Stimuli-responsive hydrogel-silver nanoparticles composite for development of
localized surface plasmon resonance-based optical biosensor. Analytica
Chimica Acta 611(2): 205-211.
Gibas, I.
& Janik, H. 2010. Review: Synthetic polymer hydrogels for biomedical
applications. Chemistry & Chemical Technology 4(4): 298-304.
Hu, X., Zhou, J., Zhang, N., Tan, H. & Gao, C. 2008. Preparation
and properties of an injectable scaffold of poly(lactic-co-glycolic
acid) microparticles/chitosan hydrogel. Journal of the Mechanical Behavior
of Biomedical Materials 1(4): 352-359.
Huang, Z.,
Wu, Q., Liu, S., Liu, T. & Zhang, B. 2013. A novel
biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal
ions. Carbohydrate Polymers 97(2): 496-501.
Jaiswal, M., Lale, S., Ramesh, N.G. & Koul, V. 2013. Synthesis
and characterization of positively charged interpenetrating double-network
hydrogel matrices for biomedical applications. Reactive and Functional
Polymers 73(11): 1493-1499.
Jeon, Y.S.,
Lei, J. & Kim, J.H. 2008. Dye adsorption characteristics of
alginate/polyaspartate hydrogels. Journal of Industrial and Engineering
Chemistry 14: 726-731.
Johari,
N.S., Ahmad, I. & Halib, N. 2012. Comparison study of hydrogels properties
synthesized with micro- and nano- size bacterial cellulose particels extracted
from Nata de coco. Chemical and Biochemical Engineering Quarterly 26(4):
399-404.
Kentaro, A.
& Hiroyuki, Y. 2012. Cellulose nanofiber-based hydrogels
with high mechanical strength. Cellulose 19(6): 1907-1912.
Koupai,
J.A., Eslamian, S.S. & Kazemi, J.A. 2008. Enhancing the available water
content in unsaturated soil zone using hydrogel, to improve plant growth
indices. Ecohydrology & Hydrobiology 8(1): 67-75.
La, Y.H., McCloskey, B.D., Sooriyakumaran, R., Vora, A.,
Freeman, B., Nassar, M., Hedrick, J., Nelson, A. & Allen, R. 2011.
Bifunctional hydrogel coatings for water purification membranes: Improved
fouling resistance and antimicrobial activity. Journal of Membrane Science 372(1-2):
285-291.
Lee,
K.Y., Quero, F., Blaker, J., Hill, C., Eichhorn, S. & Bismarck, A. 2011. Surface
only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3): 595-605.
Liu,
A., Chen, X., Wang, K., Wei, N., Sun, Z., Lin, X., Chen, Y. & Du, M. 2011. Electrochemical DNA
biosensor based on aldehyde-agarose hydrogel modified glassy carbon electrode
for detection of PML/RARa fusion gene. Sensors and Actuators B: Chemical 160(1):
1458-1463.
Masteiková,
R., Chalupová, Z. & Šklubalová, Z. 2003. Stimuli-sensitive
hydrogels in controlled and sustained drug delivery. Medicina 39(2):
19-24.
Mirahmadi, F.,
Tafazzoli-Shadpour, M., Shokrgozar, M.A. & Bonakdar, S. 2013. Enhanced
mechanical properties of thermosensitive chitosan hydrogel by silk fibers for
cartilage tissue engineering. Materials Science and Engineering: C 33(8):
4786-4794.
Murthy, P.S.K., Murali
Mohan, Y., Varaprasad, K., Sreedhar, B. & Mohana Raju, K. 2008. First
successful design of semi- IPN hydrogel-silver nanocomposites: A facile
approach for antibacterial application. Journal of Colloid and Interface
Science 318(2): 217-224.
Narjary,
B., Aggarwal, P., Singh, A., Chakraborty, D. & Singh, R. 2012. Water
availability in different soils in relation to hydrogel application. Geoderma 187-188(0): 94-101.
Nasef, M.M. & Güven,
O. 2006. Radiation-grafted copolymers for separation and purification purposes:
Status, challenges and future directions. Progress in
Polymer Science 37(12): 1597-1656.
Ng,
S.S., Su, K., Li, C., Chan-Park, M.B., Wang, D.A. & Chan, V. 2012. Biomechanical study of
the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in
the surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta
Biomaterialia 8(1): 244-252.
Ningmei, W. &
Zhengkui, L. 2013. Synthesis and characterization of poly(HEA/MALA)
hydrogel and its application in removal of heavy metal ions from water. Chemical
Engineering Journal 215-216(0): 894-902.
Nurettin,
S., Ozgur, O., Sema, E., Yakup, B., Senol, K. & Nahit, A. 2010. Utilization
of magnetic hydrogels in the separation of toxic metal ions from aqueous
environments. Desalination 260(1-3): 57-64.
Oz,
M., Lorke, D.E. & Petroianu, G.A. 2009. Methylene blue and
Alzheimer’s disease. Biochemical Pharmacology 78(8): 927-932.
Ozgur, O., Sema, E.,
Yakup, B., Nahit, A. & Nurettin, S. 2009. Removal of
toxic metal ions with magnetic hydrogels. Water Research 43(17):
4403-4411.
Pourjavadi,
A., Doulabi, M., Soleyman, R., Sharif, S. & Eghtesadi, S.A. 2012. Synthesis
and characterization of a novel (salep phosphate)-based hydrogel as a carrier
matrix for fertilizer release. Reactive and Functional Polymers 72(10):
667-672.
Qiu, Y. & Park, K.
2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 64, Supplement(0):
49-60.
Rahman, M.A., Amin,
S.M.R. & Alam, A.M.S. 2012. Removal of methylene blue from waste water using activated carbon prepared from rice husk. Journal
Science of University Dhaka 60(2): 185-189.
Sáfrány,
Á., Beiler, B. & Vincze, Á. 2010. Radiation polymerization and crosslinking: A
viable alternative for synthesis of porous functional polymers. Radiation
Physics and Chemistry 79(4): 462-466.
Saha,
N., Saarai, A., Roy, N., Kitano, T. & Saha, P. 2011. Polymeric biomaterial
based hydrogels for biomedical applications. Journal of Biomaterials and
Nanobiotechnology 2: 85-90.
Sahera,
M., Ghada, M. & Manal, T. 2012. Synthesis and characterization of poly(acrylic acid)-<i>g -sodium alginate
hydrogel initiated by gamma irradiation for controlled release of
chlortetracycline HCl. Monatshefte für Chemie / Chemical Monthly 1-9.
Sahiner,
N., Ozay, O., Aktas, N., Blake, D.A. & John, V.T. 2011. Arsenic (V) removal
with modifiable bulk and nano p(4-
vinylpyridine)-based hydrogels: The effect of hydrogel sizes and
quarternization agents. Desalination 279(1-3): 344-352.
Sajab, M.S., Chia, C.H.,
Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S.
2011. Citric acid modified kenaf core fibres for removal of methylene blue from
aqueous solution. Bioresource Technology 102(15): 7237-7243.
Sand,
A., Mishra, D.K., Pandey, V.S., Mishra, M.M. & Behari, K. 2012. Synthesis of graft
copolymer (CgOH-g-AGA): Physicochemical properties, characterization and
application. Carbohydrate Polymers 90(2): 901-907.
Sannino,
A., Demitri, C. & Madaghiele, M. 2009. Biodegradable cellulose-based hydrogels:
Design and applications. Materials 2(2): 353-373.
Spagnol,
C., Rodrigues, F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. &
Muniz, E.C. 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and
chitosan-graft-poly(acrylic acid). Carbohydrate
Polymers 87(3): 2038-2045.
Tamura,
H., Furuike, T., Nair, S.V. & Jayakumar, R. 2011. Biomedical
applications of chitin hydrogel membranes and scaffolds. Carbohydrate
Polymers 84(2): 820-824.
Wang, N. & Wu, X.S.
1998. A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic
acid) microspheres using agarose hydrogel. International
Journal of Pharmaceutics 166(1): 1-14.
Wang,
X., Ye, G. & Wang, X. 2014. Hydrogel diffraction gratings functionalized
with crown ether for heavy metal ion detection. Sensors and Actuators B:
Chemical 193(0): 413-419.
Wang,
Y., Huang, C.J., Jonas, U., Wei, T., Dostalek, J. & Knoll, W. 2010. Biosensor based on
hydrogel optical waveguide spectroscopy. Biosensors and Bioelectronics 25(7):
1663- 1668.
Wendler,
F., Schulze, T., Ciechanska, D., Wesolowska, E., Wawro, D., Meister, F.,
Budtova, T. & Liebner, F. 2013. Cellulose products from solutions: Film, fibres
and aerogels. In The European Polysaccharide Network of Excellence (EPNOE), edited
by Navard, P. Vienna: Springer. pp. 153-185.
Zhang,
L., Zheng, G.J., Guo, Y.T., Zhou, L., Du, J. & He, H. 2014. Preparation of novel
biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pacific Journal of
Tropical Medicine 7(2): 136-140.
Zhong,
K., Lin, Z.T., Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y. & Liao, Z.W.
2013. Starch
derivative-based superabsorbent with integration of water-retaining and
controlled-release fertilizers. Carbohydrate Polymers 92(2): 1367-1376.
*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my
|