Sains Malaysiana 46(11)(2017): 2041-2048
http://dx.doi.org/10.17576/jsm-2017-4611-04
Failure
Characteristic and Fracture Evolution Law of Overburden of Thick Coal in Fully
Mechanized Sub-level Caving Mining
(Pencirian Kegagalan dan Evolusi Retakan Hukum Beban Atas
Arang Batu Padat dalam Perlombongan Perampakan Subparas Berjentera Penuh)
XIAOLEI
WANG1,2, QIRONG QIN1 & CUNHUI FAN1*
1State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,
Southwest Petroleum University, Chengdu 610050, China
2Heilongjiang Vocational College of Energy, Shuangyashan 155100, China
Diserahkan: 30 Januari 2017/Diterima: 12 Mei 2017
ABSTRACT
In mining process, the height of water flowing fractured zone is
important significance to prevent mine of water and gas, in order to further
research the failure characteristic of the overlying strata. Taking certain
coal mine with 5.82 m mining height as the experimental face, by using the
equipment which is sealed two ends by capsules in borehole, affused measurable
water between the two capsules and borehole televiewer system, ground
penetrating radar, microseismic monitoring system in underground coal mine, the
height of water flowing fractured zone of fully-mechanized top caving are
monitored, a numerical simulation experiment on the failure process was
conducted, a similarity simulation experiment on the cracks evolution was
conducted, at the same time, empirical formula of traditional was modified, The
results showed that the height of caving and fractured zones were respectively
43.1 and 86.7 m in fully mechanized sub-level caving mining. The data
difference of each test method of caving, fractured and water flowing fractured
zones were respectively less than 4.5%, 7.1% and 9.0%. The degree of fracture
development was low before mining, the number of fissures was obviously
increased after mining, the degree of fracture development increased. The fractures
cluster region mainly focuses near the coal wall. The fractures density
distribution curves of overlying strata like sanke-shapes. The new and adapt to
certain coal mine geological conditions empirical formula of water flowing
fractured zone height is proposed.
Keywords: Cracks evolution; empirical formula; ground penetrating
radar; microseismic monitoring system; overburden failure
ABSTRAK
Dalam proses perlombongan, zon retak ketinggian air
mengalir adalah keertian penting untuk mengelakkan lombong daripada air dan gas
untuk kajian lanjut tentang ciri kegagalan strata atas. Dengan mengambil
lombong arang batu tertentu pada ketinggian lombong 5.82 m sebagai muka uji
kaji, menggunakan peralatan yang ditutup kedua-dua hujung dengan kapsul dalam
lubang gerek, pelakuran air boleh ukur antara dua kapsul tersebut dan sistem
petelelihat lubang gerek, radar menembusi tanah, sistem pemantauan mikroseismos
lombong arang batu bawah tanah, zon retak ketinggian air mengalir perampakan
atas berjentera penuh adalah dipantau, uji kaji simulasi berangka ke atas
proses kegagalan telah dijalankan, uji kaji simulasi keserupaan pada evolusi
retak telah dijalankan dan pada masa yang sama formula empirik tradisi telah
diubah suai. Keputusan kajian menunjukkan bahawa ketinggian zon perampakan dan
retak masing-masing adalah 43.1 dan 86.7 m dalam perlombongan perampakan
subparas berjentera penuh. Perbezaan data untuk setiap kaedah ujian zon
perampakan, zon retak dan zon retak air mengalir masing-masing kurang daripada
4.5%, 7.1% dan 9.0%. Tahap pembangunan retak adalah rendah sebelum
perlombongan, bilangan rekahan jelas meningkat selepas perlombongan serta
darjah pembangunan retak juga meningkat. Rantau kelompok retak tertumpu
berhampiran dinding arang batu. Lengkung taburan kepadatan retak atas strata
berbentuk seperti sanke. Kaedah baru dan sesuai dengan formula empirik keadaan
geologi lombong arang batu tertentu zon retak ketinggian air mengalir adalah
dicadangkan.
Kata kunci: Evolusi retak; formula
empirik; kegagalan beban atas; radar menembusi tanah; sistem pemantauan
mikroseismos
RUJUKAN
Cheng, X.F., Liu,
S.D. & Liu, D.X. 2001. Failure law of the sound wave CT detection after
mining. Journal of China Coal Society 26: 153-155.
Chi, A. & Li, Y.
2013. The model for calculating elastic modulus and poisson’s ratio of coal
body. Open Fuels Energy Science Journal 6: 36-43.
Gao, B., Wang, X.,
Zhu, M. & Zhou, J. 2012. Dynamic development characteristics of two zones
of overburden strata under conditions of compound roof highly gassy and thick
coal seam in full-mechanized top coal caving faces. Chinese Journal of Rock
Mechanics and Engineering 31: 3444-3451.
Iannacchione, A.T.
& Tadolini, S.C. 2016. Occurrence, predication, and control of coal burst
events in the US. Int. J. Min. Sci. Technol. 26: 39-46.
Idris, A.B., Ismail,
S., Haron, Y. & Suhana, Y. 2009. Insects of Tasik Chini with special
emphasis on Ichneumonid Wasps. Sains Malaysiana 38(6): 813-816.
Kidybinski, A. & Babcock, C.O. 1973. Stress distribution and
rock fracture zones in the roof of longwall face in a coal mine. Rock Mech 5:
1-19.
Lindang, H.U.,
Tarmudi, Z.H. & Jawan, A. 2017. Assessing water quality index in river
basin: Fuzzy inference system approach. Malaysian Journal of Geoscience 1(1):
27-31.
Loke, M.H., Chambers,
J.E., Rucker, D.F., Kuras, O. & Wilkinson, P.B. 2013. Recent developments
in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95:
135-156.
Mills, K.W., Garratt,
O. & Blacka, B.G. 2016. Measurement of shear movements in the overburden
strata ahead of longwall mining. International Journal of Mining Science and
Technology 26: 97-102.
Palchik, V. 2003.
Formation of fractured zones in overburden due to longwall mining. Environ
Geol. 44: 28-38.
Poulsen, B., Manoj
Khanal, A., Manohar, R., Adhikary, D. & Balusu, R. 2014. Mine overburden
dump failure: A case study. Geotech. Geol. Eng. 32: 297-309.
Roslee, R., Bidin,
K., Musta, B., Tahir, S., Tongkul, F. & Norhisham, M.N. 2017. GIS
application for comprehensive spatial soil erosion analysis with MUSLE model in
Sandakan town area, Sabah, Malaysia. Geological Behavior 1(1): 1-05.
van Schoor, M. 2005.
The application of in-mine electrical resistance tomography (ERT) for mapping
potholes and other disruptive features ahead of mining. J. South Afr. Inst.
Min. Metall. 105: 447-451.
*Pengarang
untuk surat-menyurat; email: 18039172835@126.com
|