Sains Malaysiana 46(11)(2017): 2101-2108
http://dx.doi.org/10.17576/jsm-2017-4611-10
Shear Strength of Cemented
Sand Gravel and Rock Materials
(Kekuatan
Ricih Pasir Kerikil Bersimen dan Bahan Batu)
ZHONGWEI LIU*, JINSHENG JIA, WEI FENG, FENGLING MA & CUIYING
ZHENG
Division
of Materials, China Institute of Water Resources and Hydropower
Research, Beijing 100038, China
Diserahkan:
8 Januari 2017/Diterima: 4 Jun 2017
ABSTRACT
Shear strength is currently a significant parameter in the design of cemented
sand gravel and rock (CSGR) dams. Shear strength tests were carried
out to compare material without layers noumenon and layer condition.
The experimental results showed good linearity in the curves of
shear strength and pure grinding tests with correlation coefficients
of nearly 97%. The friction coefficient was similar to that of
C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were
not added and the layer was paved immediately after 4 h of waiting
interval.
Keywords: Cohesion; CSGR; friction; layer; shear strength
ABSTRAK
Kekuatan ricih merupakan parameter penting dalam reka bentuk pasir
kerikil bersimen dan batu empangan (CSGR). Ujian kekuatan ricih dilakukan
untuk membandingkan bahan tanpa lapisan noumenon dan keadaan berlapis.
Keputusan eksperimen menunjukkan garis lurus yang baik dalam lengkungan
kekuatan ricih dan ujian pengisaran tulen dengan pekali korelasi
menghampiri 97%. Pekali geseran adalah sama dengan penggelek konkrit
yang dipadatkan C10 (RCC), tetapi nilai kejeleketan lebih
rendah berbanding RCC. Kekuatan ricih lapisan CSGR
menurun sebanyak 40% apabila campuran perencat tidak
ditambah dan lapisan itu diturap dengan serta-merta selepas selang
masa 4 jam.
Kata kunci: CSGR; geseran; kejeleketan; kekuatan ricih; lapisan
RUJUKAN
Asmida, I., Noor Akmal, A.B., Ahmad,
I. & Sarah Diyana, M. 2017. Biodiversity of macroalgae in
Blue Lagoon, the Straits of Malacca, Malaysia and some aspects
of changes in species composition. Sains Malaysiana 46(1):
1-7.
Carvajal, C., Peyras, L., Bacconnet,
C. & Becue, J. 2009. Probability modelling of shear strength
parameters of RCC gravity dams for reliability analysis of structural
safety. European Journal of Environmental and Civil Engineering
13(1): 91-119.
Cervera, M., Oliver, J. & Prato,
T. 2000. Simulation of construction of RCC dams. II: Stress and
damage. Journal of Structural Engineering-asce 126(9):
1062- 1069.
Das, S.K. & Yudhbir. 2005. Geotechnical
characterization of some indian fly ashes. Journal of Materials
in Civil Engineering 17(5): 544-552.
DL/T 5055. 2007. Technical Specification
of Fly Ash for Use in Hydraulic Concrete. Beijing: China Electric
Power Press.
Farinha, M.L., Caldeira, L.M. &
Neves, E.M. 2015. Limit state design approach for the safety evaluation
of the foundations of concrete gravity dams. Structure and
Infrastructure Engineering 11(10): 1306-1322.
Feng, W., Jia, J.S. & Ma, F.L.
2013. Study on design parameters of mix proportion forcemented
sand and gravel (CSG). Water Resources and Hydropower Engineering
44(2): 55-58.
Gouvas, H. & Orfanos, C. 2014.
Determination of factors affecting compressive strength of lean
RCC mixtures: The experience of Filiatrinos Dam. Geotechnical
and Geological Engineering 32(5): 1317-1327.
Jia, J., Liu, N., Zheng, C., Ma,
F., Du, Z. & Wang, Y. 2016. Studies on cemented material dams
and its application. Journal of Hydraulic Engineering 47(3):
315-323.
John, A., Hassan, B., Nur Hanisa,
S., Kamaruzzaman, M. & Kadhar Sha, B.Y. 2017. Community structure
and post-monsoonal distribution of icthyoplankton in Kuatan river,
Malaysia. Environment Ecosystem Science 1(1): 01-03.
Khan,
A., Rehman, R., Rashid, H. & Nasir, A. 2017. Exploration of
environmental friendly adsorbents for treatment of azo dyes from
textile wastewater and its dosage optimization. Earth Science
Pakistan 1(1): 05- 07.
Nagataki, S., Fujisawa, T. &
Kawasaki, H. 2008. State of art of RCD Dams in Japan. Anais do
50° Congresso Brasileiro do Concreto CBC2008-RCC Symposium
Setmbro. pp. 1-20.
Oyanguren, P.R., Nicieza, C.G.,
Fernandez, M.I. & Palacio, C.G. 2008. Stability analysis of
Llerin Rockfill Dam: An in situ direct shear test. Engineering
Geology 100(3): 120-130.
Park, C., Yoon, J., Kim, W. &
Won, J. 2007. Mechanical and durability performance of roller-compacted
concrete with fly ash for dam applications. International Journal
of Concrete Structures and Materials 1(1): 57-61.
Schrader, E.K. 1977. Roller-compacted
concrete. Materials & Structures 34(7): 413-417.
Shi, Y. & Fang, K.H. 2006. Strength
of roller compacted concrete. Key Engineering Materials 302-303(6):
398-402.
Song, Y.P., Wen, W. & Wang,
H.L. 2012. Analysis on compression-shear strength of roller compacted
concrete. Journal of Water Resources and Architectural Engineering
6: 44-47.
SL352. 2006. Test Code for Hydraulic
Concrete. Beijing: China Waterpower Press.
SL678. 2014. Technical Guidelines
for Cemented Material Dams. Beijing: China Waterpower Press.
Wang, J., Yang, Y. & Chai, H.
2016. Strength of a roller compacted rockfill sandstone from in-situ
direct shear test. Soil Mechanics and Foundation Engineering
53(1): 30-34.
Wang, W., Kou, S. & Xing, F.
2013. Deformation properties and direct shear of medium strength
concrete prepared with 100% recycled coarse aggregates. Construction
and Building Materials 48: 187-193.
Yuan, C.H., Zhou, J. & Min,
H. 2005. An experiment study of shearing strength of roller compacted
concrete (RCC). Soil Engineering and Foundation 19(5):
68-71.
Huan, Z.Q., Song, Y.P. & Wu,
Z.M. 2005. Numerical simulation of tensile failure at adjacent
concrete layers in RCC dams. Journal of Hydraulic Engineering
6: 680-686, 693.
Zhou, J.P. & Dang, L.C. 2011.
Hydraulic Design Manual. 5th Volume of Concrete Dams. Beijing:
China Waterpower Press. p. 380.
*Pengarang untuk surat-menyurat;
email: lzw9958@163.com