Sains Malaysiana 46(11)(2017): 2125-2132
http://dx.doi.org/10.17576/jsm-2017-4611-13
Connectivity Analysis of Magnetic Mineral
Veins based on Multi-boreholes
Image
(Analisis
Kesambungan Vena Mineral Magnet berdasarkan Imej Pelbagai Lubang Gerek)
ZENGQIANG HAN1*, CHUANYING WANG1 & PEILIANG
HU2
1State Key Laboratory of
Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,
Chinese Academy of Sciences, Wuhan 430071, China
2Changsha Institute of Mining
Research, Changsha 410012, China
Diserahkan:
8 Februari 2017/Diterima: 1 Jun 2017
ABSTRACT
There are a large number of primary
structural planes of deep rock ore such as rhyolite, and bedding, which are
well preserved and are often the geological interfaces of mineralization. Study
on the occurrence of these structural planes is helpful to understand the
extension direction of deep veins. Using borehole imaging technology as the
means of acquiring information of structural plane, the magnetic angle of the
borehole is obtained by using the gyroscope and the magnetic instrument and the
structural plane occurrence is modified to obtain the accurate information.
According to the depth effect of the deep structural plane, the concept of the
feature point pair is proposed. In this paper, the mathematical description
method of the structural plane in the space coordinate system is established
and the information of the shape and depth of the structure plane is
transformed into the 3D point coordinates in the space coordinate system. Based
on the feature points, the connectivity analysis method of structural plane is
established and the connectivity of the structural planes such as the interface
of the vein and rhyolite is analyzed. According to the stratigraphic
information in the borehole image, the extension direction of the whole field
is determined. The feasibility of the method is verified by the application in
a magnetite in Anhui Province, China. The results are in good agreement with
the actual drilling results and the error of traditional drilling analysis is
corrected. The main conclusions of this paper include: The use of gyroscopes
and magnetic instrument can obtain the magnetic effect angle, to modify the
structural plane information; and multi borehole structural planes connectivity
analysis can provide a reference for the extension of the deep veins.
Keywords: Borehole image; connectivity analysis; magnetic effect
angle; magnetic mineral vein; structural plane
ABSTRAK
Terdapat sejumlah besar
struktur satah utama dalam bijih batuan dalam seperti riolit dan perlapisan
yang terpelihara dan merupakan antara muka geologi untuk pemineralan. Kajian
tentang kejadian struktur satah ini sangat membantu untuk memahami arah
perluasan vena dalam. Menggunakan teknologi pengimejan lubang gerek sebagai
cara mendapatkan maklumat struktur satah, sudut magnet lubang gerek diperoleh
dengan menggunakan giroskop dan alatan magnet dan kejadian struktur satah
diubah suai untuk mendapatkan maklumat yang tepat. Menurut kesan kedalaman
struktur satah dalam, konsep ciri butiran pasangan dicadangkan. Dalam kertas
ini, kaedah penerangan matematik struktur satah dalam sistem koordinat ruang
ditubuhkan dan maklumat bentuk dan kedalaman struktur satah ditukar menjadi
koordinat butiran 3D dalam sistem koordinat ruang. Berdasarkan ciri butiran
ini, kaedah analisis kesambungan struktur satah ditubuhkan dan kesambungan
struktur satah seperti antara muka vena dan riolit dianalisis. Menurut maklumat
stratigrafi dalam imej lubang gerek, arah perluasan keseluruhan bidang
ditentukan. Kebolehlaksanaan kaedah ini disahkan dengan kegunaannya dalam
magnetit di Wilayah Anhui, China. Keputusan ini bersetuju dengan keputusan
sebenar penggerudian dan ralat analisis penggerudian tradisi diperbetulkan.
Kesimpulan utama kertas ialah penggunaan giroskop dan alatan magnet boleh
mendapatkan sudut kesan magnet untuk mengubah suai maklumat struktur satah dan
analisis kesambungan pelbagai lubang gerek struktur satah boleh memberikan
rujukan untuk perluasan vena dalam.
Kata kunci: Analisis kesambungan; imej
lubang gerek; struktur satah; sudut kesan magnet; vena mineral magnet
RUJUKAN
Anees, M.M., Qasim,
M. & Bashir, A. 2017. Physiological and physical impact of noise pollution
on environment. Earth Science Pakistan 1(1): 08-11.
Baecher, G.B.,
Lanney, N.A. & Einstein, H.H. 1977. Statistical description of rock
properties and sampling/Proceedings of the 18th US Symposium on Rock
Mechanics. Golden, Colorado, USA: Colorado School of Mines Press. pp. 1-8.
Deere, D.U. 1964.
Technical description of rock cores for engineering purposes. Rock Mechanics
and Engineering Geology 1(1): 17-22.
Han, Z.Q., Wang, C.Y.
& Zhu, H.Y. 2015. Research on deep joints and lode extension based on
digital borehole camera technology. Polish Maritime Research 22(SP1):
10-14.
Han, Z.Q., Wang, C.Y.
& Liu, S.B. & Zhu, H.Y. 2013. Research on connectivity of
deep ore-loads of borehole based on digital borehole camera. Disaster
Advances 6(8): 41-46.
Haq, M.N.U., Wazir,
S.M., Ullah, T., Khan, R.A., Shah., M.S. & Khatak, A. 2016. Phytochemical
and biological evaluation of defatted seeds of Jatropha curcas. Sains
Malaysiana 45(10): 1435-1442.
Huang, L., Tang, H.M.
& Ge, Y.F. & Zhang, L. 2012. New trial algorithm for rock discontinuity
diameter application to semi-trace line-sampling. Chinese Journal of Rock
Mechanics and Engineering 31(1): 140-153.
Huang, R.Q., Xu, M.,
Chen, J.P. Hu, X.W. & Fan, L.M. 2004. Fine Description of
Complex Rock Mass Structure and Its Engineering Application.
Beijing: Science Press.
Jia, H.B., Tang, H.M.,
Liu, Y.R. & Ma, S.Z. 2008. Theory and Engineering Application
of 3D Network Analogy of Rock Mass Discontinuities. Beijing:
Science Press.
International Society
for Rock Mechanics (ISRM). 1978. Suggested methods for the quantitative
description of discontinuities in rock masses. International Journal of Rock
Mechanics and Mining Sciences & Geomechanics Abstracts 15: 319-368.
Jafar Ahamed, A.
& Loganathan, K. 2017. Water quality concern in the Amaravathi River Basin
of Karur district: A view at heavy metal concentration and their
interrelationships using geostatistical and multivariate analysis. Geology,
Ecology, and Landscapes 1(1): 19-36.
Liu, Y.Z., Sheng,
J.L., Ge, X.R. & Wang, S.L. 2007. Evaluation of rock mass quality based on
fractal dimension of rock mass discontinuity distribution. Rock and Soil
Mechanis 28(5): 971-975.
Lu, B., Ding, X. & Wu, A.Q. 2007. Study on method of
orientation data partitioning of randomly distributed discontinuities of rocks. Chinese Journal of Rock Mechanics and Engineering 26(9): 1809-1816.
Shi, Y.Q. & Dai, C.Y. 2007.
Directly determining the occurrence of rock mass structural plane using
drilling method. The Chinese Journal of Geological Hazard and Control 18(1):
120-123.
Song, J.J. 2009.
Distribution-free method for estimating size distribution and volumetric
frequency of rock joints. International Journal of Rock Mechanics and Mining
Sciences 46(4): 748-760.
Wang, C.Y., Zhong, S. & Sun,
W.C. 2009. Study of connectivity of discontinuities of borehole based on
digital borehole images. Chinese Journal of Rock Mechanics and Engineering 28(12):
2405-2410.
Wu, F. 1993. Principles of Statistical
Mechanics of Rock Masses. Wuhan: China University of Geosciences
Press. pp. 30-63.
*Pengarang untuk
surat-menyurat; email: zqhan@whrsm.ac.cn
|