Sains Malaysiana 46(8)(2017): 1183–1189
http://dx.doi.org/10.17576/jsm-2017-4608-03
A Protocol for Rapid
and High-Frequency In Vitro Propagation
of Solanum nigrumL.
(Protokol bagi Pembiakan Pantas dan Berfrekuensi Tinggi In Vitro Solanum nigrum L.)
LI-JUAN ZOU, JING-TIAN YANG
& QING-GUI WU*
Ecological
Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, 621000 Mianyang, China
Diserahkan: 24 Mei 2016/Diterima: 25 Januari 2017
ABSTRACT
Solanum nigrum L. is a species highly valued for its medicinal properties. In the present
study, an efficient propagation system was established by using five explants
of S. nigrum namely, roots, leaves, rooted
hypocotyls, nodal segments and petioles. Various types of plant growth
regulators (PGRs) were used to determine the most effective hormone
combination for callus induction and organogenesis. Zeatin (ZT), thidiazuron (TDZ), kinetin (Kin) and
indole-3-acetic acid (IAA) were found to induce multiple
shoots. Shoot organogenesis was induced in the five explants. The highest mean
for number of shoots per petioles (31.54±5.76) and rooted hypocotyls
(44.00±1.51) with a 100% induction rate was obtained on Murashige and Skoog (MS) medium fortified with 0.4 mg/L IAA and
3.0 mg/L ZT. MS medium containing 0.4 mg/L IAA and
3.0 mg/L TDZ was found to be optimal for shoot regeneration of
roots, leaves and nodal segments. The highest regeneration frequency (100%)
with mean numbers of shoots equal to 38.77±6.87 for roots, 42.73±7.75 for
leaves and 56.73±7.98 for nodal segments was produced. Regenerated shoots
rooted effectively on half-strength MS medium and acclimatized
successfully in soil with a 100% survival rate and normal growth. The protocol
can be used for the large-scale propagation of S. nigrum to meet the increasing demand of commercial cultivation.
Keywords: Callus;
explants; in vitro propagation; organogenesis; Solanum nigrum
ABSTRAK
Solanum
nigrum L. ialah
spesies yang amat dihargai bagi
sifat perubatannya. Dalam kajian
ini, sistem pembiakan
cekap telah
ditubuhkan dengan menggunakan lima eksplan daripadaS. nigrum iaitu
akar, daun,
hipokotil berakar, nod segmen dan petiol.
Pelbagai
jenis pengatur pertumbuhan tumbuhan (PGRs)
telah digunakan
untuk menentukan gabungan hormon
paling berkesan untuk aruhan kalus dan
organogenesis. Zeatin (ZT), thidiazuron (TDZ)
kinetin (Kin) dan asid
indol-3-asetik (IAA) dilihat
berjaya mengaruh
beberapa pucuk. Pucuk organogenesis telah diaruh dalam lima
eksplan. Min tertinggi
bagi bilangan pucuk
setiap petiol
ialah (31.54±5.76) dan
hipokotil berakar (44.00±1.51)
dengan kadar
aruhan 100% diperoleh
pada medium Murashige dan Skoog (MS) dengan
0.4 mg/L IAA dan 3.0 mg/L ZT.
Medium MS mengandungi
0.4 mg/L IAA dan 3.0 mg/L TDZ
dilihat optimal untuk pertumbuhan semula pucuk untuk akar,
daun dan
nod segmen. Kekerapan penjanaan semula tertinggi (100%) dengan purata bilangan pucuk sama
dengan 38.77±6.87 untuk
akar, 42.73±7.75 daun
dan 56.73±7.98 untuk
nod segmen telah dihasilkan.
Penghasilan semula
pucuk berakar berkesan
pada medium MS setengah-kekuatan
dan berjaya
mengaklimatisasikan dalam tanah dengan kadar kemandirian 100%
dan pertumbuhan yang normal.
Protokol
ini boleh digunakan
untuk pembiakan
S. nigrumsecara besar-besaran untuk memenuhi permintaan yang semakin meningkat dalam penanaman secara komersial.
Kata kunci: Eksplan; kalus; organogenesis; penanaman secarain vitro; Solanum nigrum
RUJUKAN
Acharya, E. & Pokhrel, B. 2006. Ethno-medicinal plants used by Bantar of Bhaudaha, Morang,
Nepal. Our Nature 4: 96-103.
Ben, A.S., Aung, B., Amyot, L., Lalin, I., Lachâal, M., Karray- Bouraoui, N. & Hannoufa, A. 2016. Salt stress (NaCl) affects plant growth and branch
pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiologiae Plantarum38:
72.
Capelle, S.C., Mok, D.W., Kirchner, S.C. &
Mok, M.C. 1983. Effects
of thidiazuron on cytokinin
autonomy and the metabolism of N-(delta-isopentenyl)[8-C]
adenosine in callus tissues of Phaseolus
lunatus L. Plant Physiol. 73: 796-802.
Ewais, E.A., Desouky, S.A. & Eshazly, E.H. 2015. Studies on callus induction, phytochemical constituents and
antimicrobial activity of Solanum nigrumL. (Solanaceae). Nature and Science 3: 133-138.
Filipović, B.K., Simonović, A.D., Trifunović, M.M., Dmitrović,
S.S., Savić, J.M., Jevremović,
S.B. & Subotić, A.R. 2015. Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 1: The role of antioxidant enzymes. Plant Cell Tissue Organ Cult. 121: 703-719.
Gomez, K.A. & Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. New
York: Wiley.
Jain, R., Sharma, S., Gupta, S., Sarethy,
I.P. & Gabrani, R. 2011. Solanum nigrum: Current
perspectives on therapeutic properties. Altern. Med. Rev. 16: 78-85.
Jawad, B.O., Samaraie, K.W. & Alfaisl, A.M. 2015. Effects
of Solanum nigrum aqueous extract
on normal and cancer cells line. IOSR J. Pharm. Biol. Sci. 10:
34-38.
Jiang, Q.Y., Tan, S.Y., Zhuo, F., Yang,
D.J., Ye, Z.H. & Jing, Y.X. 2016. Effect of funneliformis mosseae on the growth, cadmium accumulation and antioxidant
activities of Solanum nigrum. Appl.
Soil Ecol. 98: 112-120.
Khan, A.R., Ullah, I., Khan, A.L., Hong,
S.J., Waqas, M. & Park, G.S. 2014. Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination. Water Air Soil Poll. 225: 1-11.
Khan, A.R., Ullah, I., Waqas, M., Shahzad, R., Hong,
S.J., Park, G.S., Jung, B.K., Lee, I.J. & Shin, J.H. 2015. Plant growth-promoting potential of endophytic fungi isolated from
Solanum nigrum leaves. World
J. Microbiol. Biotechnol.3: 1461-1466.
Kou, Y., Ma, G., Teixeira, J.A. & Liu, N. 2012. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuataWall. Plant Cell
Tissue Organ Cult. 112: 1-7.
Krikorian, A.D. 1995. Hormones in tissue culture and micro-propagation. In Plant
Hormones: Physiology, Biochemistry and Molecular Biology, edited by Davies,
P.J., Dordrecht: Kluwer. pp. 774-796.
Lin, H.M., Tseng, H.C., Wang, C.J., Lin, J.J., Lo, C.W. & Chou,
F.P. 2008. Hepatoprotective
effects of Solanum nigrum L.
extract against CCI 4- induced oxidative damage in rats. Chem.
Biol. Interact. 171: 283-93.
Mallón, R., Bunn, E., Turner, S.R. & Gonza´lez,
M.L. 2008. Cryopreservation of
Centaurea ultreiae (Compositae) a critically endangered species from Galicia
(Spain). Cryo. Letters 29: 363-370.
Mallón, R., Rodríguez-Oubiña, J. &
González, M.L. 2011. Shoot regeneration from in
vitro-derived leaf and root explants of Centaurea ultreiae. Plant Cell Tissue
Organ Cult. 106: 523-530.
Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tabocco tissue cultures. Physiol. Plantarum 15: 473-479.
Murthy, B.N.S., Murch, S.J. & Saxena, P.K. 1998. Thidiazuron: A potent regulator of in vitro plant
morphogenesis. In Vitro Cell Dev. Plant 34: 267-275.
Pourebad, N., Motafakkerazad, R., Kosari-Nasab,
M., Farsad Akhtar, N. & Movafeghi,
A. 2015. The influence of TDZ concentrations on in vitro growth and
production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell Tissue Organ Cult. 122:
331-339.
Sarethy, I.P., Kashyap, A., Bahal,
U., Sejwal, N. & Gabrani,
R. 2014. Study of liquid culture
system for micropropagation of the medicinal
plant Solanum nigrum L. and its
effect on antioxidant property. Acta
Physiol. Plant 36: 2863-2870.
Singh, C.K., Raj, S.R., Patil, V.R.,
Jaiswal, P.S. & Subhash, N. 2013. Plant regeneration from leaf explants of mature sandalwood (Santalum album L.) trees in vitro conditions. In Vitro Cell Dev. Plant 49: 216-222.
Soares, C., Sousa, A., Pinto, A., Azenha, M.,
Teixeira, J., Azevedo, R.A. & Fidalgo,
F. 2016. Effect of
24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and
Ni uptake in Solanum nigrumL. under Ni
stress. Environ. Exp. Bot. 122: 115-125.
Sujatha, M. & Kumar, D. 2007. In vitro bud regeneration of Carthamus
tinctorius and wild Carthamus
species from leaf explants and axillary buds. Biol.
Plantarum 51: 782-786.
Tai, C.J., Wang, C.K., Tai, C.J., Lin, Y.F., Lin, C.S., Jian, J.Y.,
Chang, Y.J. & Chang, C.C. 2013. Aqueous
extract of Solanum nigrum leaves
induces autophagy and enhances cytotoxicity of cisplatin, doxorubicin,
docetaxel, and 5-fluorouracil in human colorectal carcinoma cells.
Evid-Based
Compl. Alt. 2013:
514719.
UdDin, I., Bano,
A. & Masood, S. 2015. Chromium toxicity
tolerance of Solanum nigrum L.
and Parthenium hysterophorus
L. plants with reference to ion pattern, antioxidation
activity and root exudation. Ecotox. Environ. Safe.113:
271-278.
Wang, H.C., Chung, P.J., Wu, C.H., Lan,
K.P., Yang, M.Y. & Wang, C.J. 2011. Solanum nigrum L. polyphenolic extract inhibits hepatocarcinoma cell growth by inducing G 2/M phase arrest and apoptosis. J.
Sci. Food Agricult. 91: 178-185.
Xu, J., Yin, H. & Li, X. 2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator,
Solanum nigrum L. Plant Cell
Rep. 28: 325-333.
Xu, K., Chang, Y.X., Liu, K., Wang, F.G., Liu, Z.Y., Zhang, T., Li,
T. & Yi, Z. 2014. Regeneration
of Solanum nigrum by somatic
embryogenesis, involving frog egg-like body, a novel structure.
Plos One 9: e98672.
Zakaria, Z.A., Zainal, H.H., Mogd-pojan, N.H.,
Morsid, N.A., Aris, A. &
Sulaiman, M.R. 2006. Antinociceptive, anti-inflammatory and antipyretic effects
of Solanum nigrum chloroform
extract in animal models. Yakugaku
Zasshi 126: 1171-1178.
*Pengarang untuk surat-menyurat;
email: qgwu30@163.com
|