Sains Malaysiana 46(8)(2017): 1183–1189

http://dx.doi.org/10.17576/jsm-2017-4608-03

 

A Protocol for Rapid and High-Frequency In Vitro Propagation of Solanum nigrumL.

(Protokol bagi Pembiakan Pantas dan Berfrekuensi Tinggi In Vitro Solanum nigrum L.)

 

LI-JUAN ZOU, JING-TIAN YANG & QING-GUI WU*

 

Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, 621000 Mianyang, China

 

Diserahkan: 24 Mei 2016/Diterima: 25 Januari 2017

 

ABSTRACT

Solanum nigrum L. is a species highly valued for its medicinal properties. In the present study, an efficient propagation system was established by using five explants of S. nigrum namely, roots, leaves, rooted hypocotyls, nodal segments and petioles. Various types of plant growth regulators (PGRs) were used to determine the most effective hormone combination for callus induction and organogenesis. Zeatin (ZT), thidiazuron (TDZ), kinetin (Kin) and indole-3-acetic acid (IAA) were found to induce multiple shoots. Shoot organogenesis was induced in the five explants. The highest mean for number of shoots per petioles (31.54±5.76) and rooted hypocotyls (44.00±1.51) with a 100% induction rate was obtained on Murashige and Skoog (MS) medium fortified with 0.4 mg/L IAA and 3.0 mg/L ZT. MS medium containing 0.4 mg/L IAA and 3.0 mg/L TDZ was found to be optimal for shoot regeneration of roots, leaves and nodal segments. The highest regeneration frequency (100%) with mean numbers of shoots equal to 38.77±6.87 for roots, 42.73±7.75 for leaves and 56.73±7.98 for nodal segments was produced. Regenerated shoots rooted effectively on half-strength MS medium and acclimatized successfully in soil with a 100% survival rate and normal growth. The protocol can be used for the large-scale propagation of S. nigrum to meet the increasing demand of commercial cultivation.

 

Keywords: Callus; explants; in vitro propagation; organogenesis; Solanum nigrum

 

 

ABSTRAK

Solanum nigrum L. ialah spesies yang amat dihargai bagi sifat perubatannya. Dalam kajian ini, sistem pembiakan cekap telah ditubuhkan dengan menggunakan lima eksplan daripadaS. nigrum iaitu akar, daun, hipokotil berakar, nod segmen dan petiol. Pelbagai jenis pengatur pertumbuhan tumbuhan (PGRs) telah digunakan untuk menentukan gabungan hormon paling berkesan untuk aruhan kalus dan organogenesis. Zeatin (ZT), thidiazuron (TDZ) kinetin (Kin) dan asid indol-3-asetik (IAA) dilihat berjaya mengaruh beberapa pucuk. Pucuk organogenesis telah diaruh dalam lima eksplan. Min tertinggi bagi bilangan pucuk setiap petiol ialah (31.54±5.76) dan hipokotil berakar (44.00±1.51) dengan kadar aruhan 100% diperoleh pada medium Murashige dan Skoog (MS) dengan 0.4 mg/L IAA dan 3.0 mg/L ZT. Medium MS mengandungi 0.4 mg/L IAA dan 3.0 mg/L TDZ dilihat optimal untuk pertumbuhan semula pucuk untuk akar, daun dan nod segmen. Kekerapan penjanaan semula tertinggi (100%) dengan purata bilangan pucuk sama dengan 38.77±6.87 untuk akar, 42.73±7.75 daun dan 56.73±7.98 untuk nod segmen telah dihasilkan. Penghasilan semula pucuk berakar berkesan pada medium MS setengah-kekuatan dan berjaya mengaklimatisasikan dalam tanah dengan kadar kemandirian 100% dan pertumbuhan yang normal. Protokol ini boleh digunakan untuk pembiakan S. nigrumsecara besar-besaran untuk memenuhi permintaan yang semakin meningkat dalam penanaman secara komersial.

 

Kata kunci: Eksplan; kalus; organogenesis; penanaman secarain vitro; Solanum nigrum

RUJUKAN

Acharya, E. & Pokhrel, B. 2006. Ethno-medicinal plants used by Bantar of Bhaudaha, Morang, Nepal. Our Nature 4: 96-103.

Ben, A.S., Aung, B., Amyot, L., Lalin, I., Lachâal, M., Karray- Bouraoui, N. & Hannoufa, A. 2016. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiologiae Plantarum38: 72.

Capelle, S.C., Mok, D.W., Kirchner, S.C. & Mok, M.C. 1983. Effects of thidiazuron on cytokinin autonomy and the metabolism of N-(delta-isopentenyl)[8-C] adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol. 73: 796-802.

Ewais, E.A., Desouky, S.A. & Eshazly, E.H. 2015. Studies on callus induction, phytochemical constituents and antimicrobial activity of Solanum nigrumL. (Solanaceae). Nature and Science 3: 133-138.

Filipović, B.K., Simonović, A.D., Trifunović, M.M., Dmitrović, S.S., Savić, J.M., Jevremović, S.B. & Subotić, A.R. 2015. Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 1: The role of antioxidant enzymes. Plant Cell Tissue Organ Cult. 121: 703-719.

Gomez, K.A. & Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. New York: Wiley.

Jain, R., Sharma, S., Gupta, S., Sarethy, I.P. & Gabrani, R. 2011. Solanum nigrum: Current perspectives on therapeutic properties. Altern. Med. Rev. 16: 78-85.

Jawad, B.O., Samaraie, K.W. & Alfaisl, A.M. 2015. Effects of Solanum nigrum aqueous extract on normal and cancer cells line. IOSR J. Pharm. Biol. Sci. 10: 34-38.

Jiang, Q.Y., Tan, S.Y., Zhuo, F., Yang, D.J., Ye, Z.H. & Jing, Y.X. 2016. Effect of funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl. Soil Ecol. 98: 112-120.

Khan, A.R., Ullah, I., Khan, A.L., Hong, S.J., Waqas, M. & Park, G.S. 2014. Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination. Water Air Soil Poll. 225: 1-11.

Khan, A.R., Ullah, I., Waqas, M., Shahzad, R., Hong, S.J., Park, G.S., Jung, B.K., Lee, I.J. & Shin, J.H. 2015. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J. Microbiol. Biotechnol.3: 1461-1466.

Kou, Y., Ma, G., Teixeira, J.A. & Liu, N. 2012. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuataWall. Plant Cell Tissue Organ Cult. 112: 1-7.

Krikorian, A.D. 1995. Hormones in tissue culture and micro-propagation. In Plant Hormones: Physiology, Biochemistry and Molecular Biology, edited by Davies, P.J., Dordrecht: Kluwer. pp. 774-796.

Lin, H.M., Tseng, H.C., Wang, C.J., Lin, J.J., Lo, C.W. & Chou, F.P. 2008. Hepatoprotective effects of Solanum nigrum L. extract against CCI 4- induced oxidative damage in rats. Chem. Biol. Interact. 171: 283-93.

Mallón, R., Bunn, E., Turner, S.R. & Gonza´lez, M.L. 2008. Cryopreservation of Centaurea ultreiae (Compositae) a critically endangered species from Galicia (Spain). Cryo. Letters 29: 363-370.

Mallón, R., Rodríguez-Oubiña, J. & González, M.L. 2011. Shoot regeneration from in vitro-derived leaf and root explants of Centaurea ultreiae. Plant Cell Tissue Organ Cult. 106: 523-530.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tabocco tissue cultures. Physiol. Plantarum 15: 473-479.

Murthy, B.N.S., Murch, S.J. & Saxena, P.K. 1998. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev. Plant 34: 267-275.

Pourebad, N., Motafakkerazad, R., Kosari-Nasab, M., Farsad Akhtar, N. & Movafeghi, A. 2015. The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell Tissue Organ Cult. 122: 331-339.

Sarethy, I.P., Kashyap, A., Bahal, U., Sejwal, N. & Gabrani, R. 2014. Study of liquid culture system for micropropagation of the medicinal plant Solanum nigrum L. and its effect on antioxidant property. Acta Physiol. Plant 36: 2863-2870.

Singh, C.K., Raj, S.R., Patil, V.R., Jaiswal, P.S. & Subhash, N. 2013. Plant regeneration from leaf explants of mature sandalwood (Santalum album L.) trees in vitro conditions. In Vitro Cell Dev. Plant 49: 216-222.

Soares, C., Sousa, A., Pinto, A., Azenha, M., Teixeira, J., Azevedo, R.A. & Fidalgo, F. 2016. Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrumL. under Ni stress. Environ. Exp. Bot. 122: 115-125.

Sujatha, M. & Kumar, D. 2007. In vitro bud regeneration of Carthamus tinctorius and wild Carthamus species from leaf explants and axillary buds. Biol. Plantarum 51: 782-786.

Tai, C.J., Wang, C.K., Tai, C.J., Lin, Y.F., Lin, C.S., Jian, J.Y., Chang, Y.J. & Chang, C.C. 2013. Aqueous extract of Solanum nigrum leaves induces autophagy and enhances cytotoxicity of cisplatin, doxorubicin, docetaxel, and 5-fluorouracil in human colorectal carcinoma cells. Evid-Based Compl. Alt. 2013: 514719.

UdDin, I., Bano, A. & Masood, S. 2015. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotox. Environ. Safe.113: 271-278.

Wang, H.C., Chung, P.J., Wu, C.H., Lan, K.P., Yang, M.Y. & Wang, C.J. 2011. Solanum nigrum L. polyphenolic extract inhibits hepatocarcinoma cell growth by inducing G 2/M phase arrest and apoptosis. J. Sci. Food Agricult. 91: 178-185.

Xu, J., Yin, H. & Li, X. 2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 28: 325-333.

Xu, K., Chang, Y.X., Liu, K., Wang, F.G., Liu, Z.Y., Zhang, T., Li, T. & Yi, Z. 2014. Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure. Plos One 9: e98672.

Zakaria, Z.A., Zainal, H.H., Mogd-pojan, N.H., Morsid, N.A., Aris, A. & Sulaiman, M.R. 2006. Antinociceptive, anti-inflammatory and antipyretic effects of Solanum nigrum chloroform extract in animal models. Yakugaku Zasshi 126: 1171-1178.

 

 

*Pengarang untuk surat-menyurat; email: qgwu30@163.com

 

 

 

 

sebelumnya