Sains Malaysiana 46(8)(2017): 1309–1316
http://dx.doi.org/10.17576/jsm-2017-4608-17
N-doped Synthesised via Microwave Induced
Photocatalytic on RR4 Dye Removal under LED Light Irradiation
(Terdop N Disintesis melalui Ketuhar Gelombang Mikro Teraruh kepada Fotopemangkinan terhadap Penyingkiran Pewarna RR4 di bawah Sinaran Cahaya LED)
M.S. AZAMI1,2, W.I. NAWAWI1*, ALI H. JAWAD1, M.A.M. ISHAK1 & K. ISMAIL2
1Photocatalysis
Laboratory, CBERG, Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis Indera Kayangan, Malaysia
2Faculty of Applied
Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
Diserahkan: 4 Januari 2016/Diterima: 6 Februari
2017
ABSTRACT
Nitrogen doped
titanium dioxide (N-doped TiO2) was synthesized by
microwave using urea as nitrogen sources with commercially available TiO2-P25.
The N-doped TiO2 was
compared with unmodified TiO2 by
carrying out the investigation on its properties using x-ray diffraction (XRD)
analysis, Brunauer-Emmett-Teller (BET),
Fourier transformed infrared spectroscopy (FTIR)
and diffuse reflectance spectroscopy (UV-Vis DRS).
The photocatalytic activities of N-doped TiO2 and
unmodified TiO2 were
studied for photodegradation of reactive red 4 (RR4)
under light emitting diode (LED) light irradiation. An
active photoresponse under LED light
irradiation was observed from N-doped TiO2 with
60 min of time irradiation to complete RR4 color removal while no
photocatalytic degradation was observed from unmodified.
Keywords: Dyelight emitting diode; microwave; nitrogen doping; photocatalysis; reactive red 4
ABSTRAK
Titanium
dioksida terdop
nitrogen (TiO2 terdop
N) telah disintesis
oleh ketuhar gelombang
mikro menggunakan
urea sebagai sumber nitrogen dengan TiO2-P25 yang boleh didapati secara komersial. TiO2 terdop N telah dibandingkan dengan TiO2
tidak diubah suai
dengan menjalankan
kajian ke atas
sifatnya menggunakan
analisis pembelauan sinar x (XRD), Brunauer-Emmett-Teller (BET), spektroskopi
transformasi Fourier inframerah
(FTIR)
dan spektroskopi
pantulan meresap (UV-Vis
DRS).
Aktiviti fotopemangkinan
TiO2 terdop
N dan TiO2 tidak diubah suai
telah dikaji
untuk pemfotorosotaan reaktif merah 4 (RR4)
di bawah sinaran
cahaya LED. Tindak
balas foto aktif
di bawah sinaran
cahaya LED diperhatikan
daripada TiO2
terdop N dengan 60 min masa
penyinaran untuk melengkapkan penyingkiran warna RR4 manakala
tiada kemusnahan
fotopemangkinan diperhatikan
daripada TiO2 tidak diubah suai.
Kata kunci: Diod pemancar cahaya; fotopemangkinan; ketuhar gelombang mikro; pendopan nitrogen; reaktif merah 4 pewarna
RUJUKAN
Alexei, V.E., Vyacheslav, N.K.,
Vladimir, K.R. & Nick, S. 2008. Visible-light-active titania photocatalysts: The
case of N-Doped TiO2 properties
and some fundamental issues. International Journal of Photoenergy 2008: 1-19.
Bangkedphol, S., Keenan, H.E., Davidson, C.M. & Sakultantimetha,
A.W. 2010. Enhancement of
tributyltin degradation under natural light by N-doped TiO2 photocatalyst. Journal of Hazardous Materials 184:
533-537.
Castillo-Ledezma, J.H. & Sa´nchez Salas, J.L. 2011. Effect of pH, solar irradiation, and semiconductor concentration on
the photocatalytic disinfection of Escherichia coli in water using
nitrogen-doped TiO2. European Food
Research and Technology 233: 825-834.
Chen, D., Jiang, Z., Geng, J., Wang, Q.
& Yang, D. 2007. Carbon and nitrogen
co-doped TiO2 with
enhanced visible light photocatalytic activity. Industrial Engineering
Chemistry Research 46: 2471-2746.
Cong, Y., Zhang, J., Chen, F. & Anpo,
M. 2007. Synthesis and
characterization of nitrogen-doped TiO2 nano photocatalyst with high
visible light activity. Journal of Physical Chemistry 111:
6976-6982.
Etacheri, V., Seery,
M., Hinder, J. & Pillai, S. 2012. Nanostructured
Ti1-xSxO2-yNy heterojunctions for efficient visible-light-induced photocatalysis. Inorganic Chemistry 51:
7164-7173.
Factorovic, M., Guz, L. & Candal,
R. 2011. N-TiO2:
Chemical synthesis and photocatalysis. Advances in
Physical Chemistry 2011: Article ID. 821204.
Feng, P., Lingfeng, C., Hao, Y., Hongjuan, W. & Jian,
Y. 2008. Synthesis and
characterization of substitutional and interstitial nitrogen-doped titanium
dioxide with visible light photocatalytic activity. Journal of Solid
State Chemistry 111: 130-136.
Gaya, U.I. & Abdullah, A.H. 2008. Heterogeneous photocatalytic degradation of organic contaminants
over titanium dioxide: A review of fundamentals, progress, and problems. Journal
of Photochemistry and Photobiology C: Photochemistry Reviews 9: 1-12.
Hashimoto, K., Irei, H. & Fujishima, K. 2005. TiO2 photocatalyst: A historical overview and future prospects. Japanese
Journal of Applied Physics 44: 8269-8285.
Hou, X., Wang, C.W., Zhu, W.D., Wang, X.Q., Li, Y., Wang, J., Chen,
J.B., Gan, T., Hu, H.Y. & Zhou, F. 2014. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its
photocatalytic effect. Solid State Sciences 29: 27-33.
Hu,
C.C., Hsu, T.C. & Kao, L.H. 2012. One-step cohydrothermal synthesis
of nitrogen-doped titanium oxide nanotubes with enhanced visible light
photocatalytic activity. International Journal of Photoenergy 2012: 1-9.
Huang,
D., Liao, S., Quan, S., Liu, L., He, Z., Wan, J.
& Zhou, W. 2008. Synthesis and characterization of
visible light responsive N-TiO2 mixed
crystal by a modified hydrothermal process. Journal
of Non-Crystall Solids 354: 3965- 3972.
Ilinoiu,
E.C., Pode, R., Manea, F., Colar, L.A., Jakab, A., Orha, C., Ratiu, C., Lazau, C. & Sfarloaga, P.
2013. Photocatalytic activity of a nitrogen-doped TiO2 modified
zeolite in the degradation of reactive yellow 125 azo dye.
Journal of the Taiwan Institute of Chemical Engineers 44: 270-278.
Kim,
T.H., Rodríguez-González, V., Gyawali, G., Cho, S.H., Sekino, T. & Lee, S.W. 2013. Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by the sonochemical method. Catalysis Today 212: 75-80.
Kuo,
Y.L., Su, T.L., Kung, F.C. & Wu, T.J. 2011. A study of
parameter setting and characterization of visible light driven nitrogen
modified commercial TiO2 photocatalysis. Journal of Hazardous Material 190(1-3):
938-944.
Larumbe,
S., Monge, M. & Gomez-Polo, C. 2015. Comparative study of (N, Fe) doped TiO2 photocatalyst. Applied Surface Science 327: 490-497.
Lin,
Y.T., Weng, C.H., Hsu, H.J., Lin, Y.H. & Shiesh, C.C. 2013. The synergistic effect of nitrogen dopant and calcination
temperature on the visible-light-induced photoactivity of N-doped TiO2. International
Journal of Photoenergy2013: 1-13.
Liu,
S. & Chen, X. 2008. A visible light
response TiO2 photocatalyst realized by cationic S-doping and its
application for phenol degradation. Journal of Hazardous Materials 152:
48-55.
Meng,
N., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K.
2007. A review and recent developments in photocatalytic
water-splitting using TiO2 for
hydrogen production. Renewable and Sustainable Energy Reviews 11(3):
401-425.
Michael,
J.P., Charles, W.D. & Ivan, P.P. 2014. N-doped TiO2 visible
light photocatalyst films via a sol-gel route using
TMEDA as the nitrogen source. Journal of Photochemistry and Photobiology A:
Chemistry 281: 27-34.
Nawi,
M.A. & Sheilatina, S.S. 2012. Photocatalytic decolourisation of
reactive red 4 dyes by an immobilised TiO2/chitosan
layer by layer system. Journal of Colloid and Interface
Science 372: 80-87.
Nawawi,
W.I. & Nawi, M.A. 2013. Electron scavenger of thin layer carbon coated and nitrogen-doped
P25 with enhanced photocatalytic activity under the visible light fluorescent
lamp. Journal of Molecular Catalysis A: Chemical 374-375: 39-45.
Nicholas,
T.N., Damian, W.S., Michael, K.S., Steven, J.H., van Wassenhoven,
A. & Suresh, C.P. 2011. Effect of N-
doping on the photocatalytic activity of sol-gel TiO2. Journal of Hazardous Material 211-212: 88-94.
Ochiai,
T., Nakata, K., Murakami, T., Fujishima, A., Yao, Y., Tryk, D.A. & Kubota, Y. 2010. Development of solar-driven electrochemical and photocatalytic water treatment
system using a boron-doped diamond electrode and TiO2 photocatalyst. Water Research 44: 904-910.
Park,
Y., Kim, W., Park, H., Tachikawa, T., Majima, T. & Choi, W. 2009. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon
precursor and the visible light activity. Applied
Catalysis B: Environmental 91: 355-361.
Pelaez, M.,
Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G.,
Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K., Entezari,
M.H. & Dionysiou, D.D. 2012. A
review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis
B: Environmental 125: 331-349.
Peng,
F., Cai, L.F., Yu, H., Wang,
H. & Yang, J. 2008. Synthesis and characterization of
substitutional and interstitial nitrogen-doped titanium dioxides with visible light
photocatalytic activity. Journal of Solid State Chemistry 181:
130-136.
Rengifo-Herrera,
J.A., Kiwi, J. & Pulgarin, C. 2009. N, S
co-doped and N-doped Degussa P-25 powders with visible light response prepared
by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol
oxidation. Journal of Photochemistry and Photobiology A: Chemistry 205:
109-115.
Sathish,
M., Viswanathan, B., Viswanath, R.P. & Gopinath, C.S. 2005. Synthesis, characterization, electronic structure, and
photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials 17:
6349-6353.
Sathish,
M., Viswanathan, B. & Viswanath, R.P. 2007. Characterization and photocatalytic activity of N-doped TiO2 prepared
by thermal decomposition of Ti-melamine complex. Applied Catalysis B 74: 307-312.
Shin,
S.H., Chun, H.H. & Jo, W.K. 2015. Enhanced
photocatalytic efficiency of N-F-Co-embedded titania under visible light exposure for removal of
indoor-level pollutants. Materials 8: 31-41.
Tauc,
J. & Menth, A. 1972. State in the band
gap. Journal of Non-Crystalline Solids 11: 569-585.
Tseng,
T.K., Lin, Y.S., Chen, Y.J. & Chu, H. 2010. A review of photocatalysts prepared by
sol-gel method for VOCs removal. International Journal of Molecular
Sciences 11: 2336-2361.
Wang,
X.P. & Lim, T.T. 2010. Solvothermal synthesis of C-N codoped TiO2 and
photocatalytic evaluation for bisphenol a degradation using a visible-light
irradiated led photoreactor. Applied
Catalysis B: Environmental 100: 355-364.
Wang,
H., Gao, X., Duan, G., Yang,
X. & Liu, X. 2015. Facile preparation of anatase-brookite-rutile
mixed-phase n-doped TiO2 with
high visible-light photocatalytic activity. Journal of Environment
Chemical Engineering 3: 603-608.
Wodka,
D., Bielanska, E., Socha,
R.P., Elzbieciak-Wodka, M., Gurgul,
J., Nowak, P., Warszynski, P. & Kumakiri, I. 2010. Photocatalytic activity of titanium dioxide modified by silver
nanoparticles. Applied Material and Interfaces 2: 1945-1953.
Wu,
X., Yin, S., Dong, Q., Guo, C., Li, H., Kimura, T.
& Sato, T. 2013. Synthesis of high visible light active
carbon-doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Applied Catalysis B: Environmental 142-143: 450-457.
Xia,
Y., Jiang, Y., Li, F., Xia, M., Xue, B. & Li, Y.
2014. Effect of calcined atmosphere on the photocatalytic activity
of P-doped TiO2. Applied
Surface Science 289: 306-315.
Yates,
H.M., Nolan, M.G., Sheel, D.W. & Pemble, M.E. 2006. The role of nitrogen doping on the development of visible light-induced
photocatalytic activity in thin TiO2 films grown on glass by
chemical vapour deposition. Journal
of Photochemistry and Photobiology A 179: 213-223.
Yu,
S., Yun, H.J., Kim, Y.H. & Yi, J. 2014. Carbon-doped TiO2 nanoparticles
wrapped with nanographene as a high-performance photocatalyst for phenol degradation under visible light
irradiation. Applied Catalysis B: Environmental 144:
893-899.
Zheng,
R., Guo, Y., Jin, C., Xie, J., Zhu, Y. & Xie, Y.
2010. Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4. Journal of Molecular Catalysis A: Chemical 319: 46-51.
Zhu, L., Xie, J., Cui, X., Shen, J. & Zhang, Z. 2010. Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiNx films. Vacuum 84: 797-802.
*Pengarang untuk surat-menyurat; email: wan_pdf@yahoo.com