Sains Malaysiana 46(8)(2017): 1317–1322

http://dx.doi.org/10.17576/jsm-2017-4608-18

 

Response of LiF:Mg,Cu,P TL Detector Simulated with Geant4

(Tindak Balas Pengesan TL LiF:Mg,Cu,P yang Disimulasi Menggunakan Geant4)

 

S. B. SAMAT* & W. PRIHARTI

 

School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 November 2016/Diterima: 7 Februari 2017

ABSTRACT

The Geant4 simulation code was developed to study the Hp(10) energy response of the LiF:Mg,Cu,P (TLD-100H). Initial study chose the simulation conditions similar to the work reported by Obryk et al. in year 2011, in which a TLD-100H chip without filter was used. The work went further to simulate the Hp(10) results obtained experimentally at SSDL Malaysia. The experiment used a TLD-100H chip embedded in a TLD card and the card was enclosed in a badge complete with PTFE filter. Irradiation with eleven photon energies in the range of 24-1250 keV was applied. The simulation code therefore took into accounts the details of the badge (the materials type and the dimensions of the chip, the card, the badge and the filters) and the set-up of the experiment (the source distance and the energies). In comparison with Obryk’s work, the simulation code yielded the mean deviation of 0.59%. For the experimental work, the simulated Hp(10) curves obtained were quite similar and comparable and a mean deviation of 13.96% was obtained. As both 0.59% and 13.96% deviations are within the acceptable limit of ±25%, it was concluded that a satisfactory level of accuracy has been achieved by the developed simulation code and the selection materials and physics processes that have been adapted in the code were correct. Sources of uncertainty that has contributed to this deviation are discussed.

 

Keywords: Energy response; Geant4; Hp(10); LiF:Mg,Cu,P; TLD-100H

 

ABSTRAK

Kod simulasi Geant4 dibangunkan untuk mengkaji tindak balas tenaga Hp(10) LiF:Mg,Cu,P (TLD-100H). Kajian awal memilih keadaan simulasi yang sama dengan kertas yang dilaporkan oleh Obryk et al. pada tahun 2011, dengan satu cip TLD-100H tanpa penuras telah digunakan. Penyelidikan ini diteruskan untuk mensimulasi keputusanHp(10) yang diperoleh secara eksperimen di SSDL Malaysia. Eksperimen menggunakan cip TLD-100H dimasukkan ke dalam kad TLD dan kad ini disimpan dalam satu lencana lengkap dengan penuras PTFE. Penyinaran dengan sebelas tenaga foton dalam julat 24-1250 keV digunakan. Kod simulasi telah mengambil kira perincian lencana (jenis bahan dan dimensi cip, kad, lencana dan penuras) serta susunan eksperimen (jarak sumber dan tenaga). Berbanding dengan kerja Obryk, kod simulasi memberikan purata sisihan 0.59%. Untuk kerja eksperimen, lengkok Hp(10) yang disimulasi didapati hampir sama dan boleh dibandingkan, dan purata sisihan 13.96% diperoleh. Kerana kedua-dua sisihan 0.59% dan 13.96% termasuk dalam had penerimaan ±25%, disimpulkan bahawa satu aras ketepatan yang memuaskan telah dicapai oleh kod simulasi yang dibangunkan dan pemilihan bahan dan proses fizik yang diambil dalam kod ini adalah betul. Sumber ketidakpastian yang menyumbang kepada sisihan ini dibincangkan.

 

Kata kunci: Geant4; Hp(10); LiF:Mg,Cu,P; respons tenaga; TLD-100H

 

RUJUKAN

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gomez Cadenas, J.J., Gonzalez, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D. 2003. Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3): 250-303.

Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G.A.P., Cooperman, G., Cosmo, G., Cuttone, G., Daquino, G.G., Donszelmann, M., Dressel, M., Folger, G., Foppiano, F., Generowicz, J., Grichine, V., Guatelli, S., Gumplinger, P., Heikkinen, A., Hrivnacova, I., Howard, A., Incerti, S., Ivanchenko, V., Johnson, T., Jones, F., Koi, T., Kokoulin, R., Kossov, M., Kurashige, H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F., Maire, M., Mantero, A., Mascialino, B., McLaren, I., Mendez Lorenzo, P., Minamimoto, K., Murakami, K., Nieminen, P., Pandola, L., Parlati, S., Peralta, L., Perl, J., Pfeiffer, A., Pia, M.G., Ribon, A., Rodrigues, P., Russo, G., Sadilov, S., Santin, G., Sasaki, T., Smith, D., Starkov, N., Tanaka, S., Tcherniaev, E., Tomé, B., Trindade, A., Truscott, P., Urban, L., Verderi, M., Walkden, A., Wellisch, J.P., Williams, D.C., Wright, D. & Yoshida, H. 2006. Geant4 developments and applications. IEEE Transactions on Nuclear Science 53 (1): 270-278.

Carinou, E., Boziari, A., Askounis, P., Mikulis, A. & Kamenopoulou, V. 2008. Energy dependence of TLD 100 and MCP-N detectors. Radiation Measurements 43(2-6): 599-602.

Eakins, J.S., Bartlett, D.T., Hager, L.G., Molinos-Solsona, C. & Tanner, R.J. 2008. The MCNP-4C2 design of a two element photon/electron dosemeter that uses magnesium/copper/ phosphorus doped lithium fluoride. Radiation Protection Dosimetry 128(1): 21-35.

González, P.R., Furetta, C. & Azorín, J. 2007. Comparison of the TL responses of two different preparations of LiF:Mg,Cu,P irradiated by photons of various energies. Applied Radiation and Isotopes 65(3): 341-344.

Guimarães, C.C., Moralles, M. & Okuno, E. 2007. GEANT4 simulation of the angular dependence of TLD-based monitor response. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580(1): 514-517.

Hranitzky, C. & Stadtmann, H. 2007. Simulated and measured Hp(10) response of the personal dosemeter Seibersdorf. Radiation Protection Dosimetry 125(1-4): 166-169.

Hranitzky, C., Stadtmann, H. & Olko, P. 2006. Determination of LiF:Mg,Ti and LiF:Mg,Cu,P TL efficiency for X-rays and their application to Monte Carlo simulations of dosemeter response. Radiation Protection Dosimetry 119(1-4): 483-486.

Izewska, J. & Rajan, G. 2003. Review of Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: IAEA.

Kadir, A.B.A., Priharti, W. & Samat, S.B. 2013. OSLD energy response performance and dose accuracy at 24 - 1250 keV: Comparison with TLD-100H and TLD-100. AIP Proceeding. pp. 108-114.

Lind, D.A., Marchal, W.G. & Wathen, S.A. 2008. Basic Statistics for Business and Economics. New York: McGraw-Hill.

Luo, L.Z. & Rotunda, J.E. 2006. Performance of Harshaw TLD-100H two-element dosemeter. Radiation Protection Dosimetry 120(1-4): 324-330.

Moralles, M., Guimarães, C.C. & Okuno, E. 2005. Response of thermosluminescent dosimeters to photons simulated with the Monte Carlo method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545(1-2): 261-268.

Obryk, B., Hranitzky, C., Stadtmann, H., Budzanowski, M. & Olko, P. 2011. Energy response of different types of rados personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) TL detectors. Radiation Protection Dosimetry 144(1-4): 211-214.

Olko, P. 2006. Microdosimetry, track structure and the response of thermoluminescence detectors. Radiation Measurements 41(Suppl. 1(0)): S57-S70.

Olko, P. 2002. The microdosimetric one-hit detector model for calculating the response of solid state detectors. Radiation Measurements 35(3): 255-267.

Olko, P., Bilski, P., Budzanowski, M., Waligórski, M.P.R., Fasso, A. & Ipe, N. 1999. Modelling of the thermoluminescence response of LiF:Mg,Cu,P (MCP-N) detectors after doses of low-energy photons. Radiation Protection Dosimetry 84(1- 4): 103-107.

Olko, P., Bilski, P., Ryba, E. & Niewiadomski, T. 1993. Microdosimetric interpretation of the anomalous photon energy response of ultra-sensitive LiF:Mg,Cu,P TL dosemeters. Radiation Protection Dosimetry 47(1-4): 31-35.

Othman, M.A.R., Cutajar, D.L., Hardcastle, N., Guatelli, S. & Rosenfeld, A.B. 2010. Monte Carlo study of MOSFET packaging, optimised for improved energy response: Single MOSFET filtration. Radiation Protection Dosimetry 141(1): 10-17.

Priharti, W., Samat, S.B & Kadir, A.B.A. 2013. Uncertainty analysis of Hp(10)meas/Hp(10)del Ratio for TLD-100H at energy 24-1250 keV. Jurnal Teknologi (Sciences & Engineering) 62(3): 115-118.

Priharti, W., Samat, S.B. & Kadir, A.B.A. 2012. The study of Hp(10) and Hp(0.07) responses for Harshaw TLD-100H at photon energy of 24-1250 keV. Paper read at 3rd Jogja International Conference on Physics Proceedings, at Yogyakarta, Indonesia.

Samat, S.B. & Evans, C.J. 1992. Statistics and Nuclear Counting – Theory, Problems and Solutions. Serdang: Universiti Pertanian Malaysia Press.

Samat, S.B., Evans, C.J., Kadni, T. & Dolah, M.T. 2009. Malaysian participation in the IAEA/WHO postal TLD and postal ionisation chamber intercomparison programmes: Analysis of results obtained during 1985-2008. Radiation Protection Dosimetry 133(3): 186-191.

Yoshida, K., Hashiguchi, K., Taira, Y., Matsuda, N., Yamashita, S. & Takamura, N. 2012. Importance of personal dose equivalent evaluation in Fukushima in overcoming social panic. Radiation Protection Dosimetry 151(1): 144-146.

 

 

*Pengarang untuk surat-menyurat; email: sbsamat@ukm.edu.my

 

 

 

 

sebelumnya