Sains Malaysiana 46(8)(2017): 1317–1322
http://dx.doi.org/10.17576/jsm-2017-4608-18
Response of LiF:Mg,Cu,P TL Detector Simulated with Geant4
(Tindak Balas Pengesan TL LiF:Mg,Cu,P yang Disimulasi Menggunakan Geant4)
S. B. SAMAT*
& W. PRIHARTI
School
of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 17
November 2016/Diterima: 7 Februari 2017
ABSTRACT
The Geant4 simulation
code was developed to study the Hp(10) energy response of the LiF:Mg,Cu,P (TLD-100H). Initial study chose
the simulation conditions similar to the work reported by Obryk et al. in year 2011, in which a TLD-100H chip without filter
was used. The work went further to simulate the Hp(10) results obtained
experimentally at SSDL Malaysia. The experiment used a TLD-100H
chip embedded in a TLD card and the card was enclosed in
a badge complete with PTFE filter. Irradiation with eleven
photon energies in the range of 24-1250 keV was
applied. The simulation code therefore took into accounts the details of the
badge (the materials type and the dimensions of the chip, the card, the badge
and the filters) and the set-up of the experiment (the source distance and the
energies). In comparison with Obryk’s work, the
simulation code yielded the mean deviation of 0.59%. For the experimental work,
the simulated Hp(10) curves obtained were
quite similar and comparable and a mean deviation of 13.96% was obtained. As
both 0.59% and 13.96% deviations are within the acceptable limit of ±25%, it
was concluded that a satisfactory level of accuracy has been achieved by the
developed simulation code and the selection materials and physics processes
that have been adapted in the code were correct. Sources of uncertainty that
has contributed to this deviation are discussed.
Keywords: Energy
response; Geant4; Hp(10); LiF:Mg,Cu,P; TLD-100H
ABSTRAK
Kod simulasi Geant4 dibangunkan untuk mengkaji tindak balas tenaga Hp(10) LiF:Mg,Cu,P (TLD-100H). Kajian awal memilih keadaan simulasi yang sama dengan kertas yang dilaporkan oleh Obryk et al. pada tahun 2011, dengan satu cip TLD-100H tanpa penuras telah digunakan. Penyelidikan ini diteruskan untuk mensimulasi keputusanHp(10) yang diperoleh secara eksperimen di SSDL Malaysia. Eksperimen menggunakan cip TLD-100H dimasukkan ke dalam kad TLD dan kad ini disimpan dalam satu lencana lengkap dengan penuras PTFE. Penyinaran dengan sebelas tenaga foton dalam julat 24-1250 keV digunakan. Kod simulasi telah mengambil kira perincian lencana (jenis bahan dan dimensi cip, kad, lencana dan penuras) serta susunan eksperimen (jarak sumber dan tenaga). Berbanding dengan kerja Obryk, kod simulasi memberikan purata sisihan 0.59%. Untuk kerja eksperimen, lengkok Hp(10) yang disimulasi didapati hampir sama dan boleh dibandingkan, dan purata sisihan 13.96% diperoleh. Kerana kedua-dua sisihan 0.59% dan 13.96% termasuk dalam had penerimaan ±25%, disimpulkan bahawa satu aras ketepatan yang memuaskan telah dicapai oleh kod simulasi yang dibangunkan dan pemilihan bahan dan proses fizik yang diambil dalam kod ini adalah betul. Sumber ketidakpastian yang menyumbang kepada sisihan ini dibincangkan.
Kata kunci: Geant4; Hp(10); LiF:Mg,Cu,P; respons tenaga; TLD-100H
RUJUKAN
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J.,
Araujo, H., Arce, P., Asai, M., Axen,
D., Banerjee, S., Barrand, G., Behner,
F., Bellagamba, L., Boudreau, J.,
Broglia, L., Brunengo,
A., Burkhardt, H., Chauvie, S., Chuma,
J., Chytracek, R., Cooperman, G.,
Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola,
G., Dietrich, D., Enami, R., Feliciello,
A., Ferguson, C., Fesefeldt, H., Folger,
G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D.,
Gomez Cadenas, J.J., Gonzalez, I.,
Gracia Abril, G., Greeniaus,
G., Greiner, W., Grichine, V., Grossheim,
A., Guatelli, S., Gumplinger,
P., Hamatsu, R., Hashimoto, K., Hasui,
H., Heikkinen, A., Howard, A., Ivanchenko,
V., Johnson, A., Jones, F.W., Kallenbach,
J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti,
M., Kelner, S., Kent, P., Kimura,
A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E.,
Lampen, T., Lara, V., Lefebure,
V., Lei, F., Liendl, M., Lockman,
W., Longo, F., Magni, S., Maire,
M., Medernach, E., Minamimoto,
K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu,
M., Nartallo, R., Nieminen,
P., Nishimura, T., Ohtsubo, K., Okamura,
M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., di Salvo, E., Santin,
G., Sasaki, T., Savvas, N., Sawada,
Y., Scherer, S., Sei, S., Sirotenko, V., Smith,
D., Starkov, N., Stoecker,
H., Sulkimo, J., Takahata,
M., Tanaka, S., Tcherniaev, E., Safai
Tehrani, E., Tropeano, M., Truscott,
P., Uno, H., Urban, L., Urban, P., Verderi,
M., Walkden, A., Wander, W., Weber, H., Wellisch,
J.P., Wenaus, T., Williams, D.C.,
Wright, D., Yamada, T., Yoshida, H., Zschiesche,
D. 2003. Geant4-a simulation toolkit. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 506(3): 250-303.
Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G.A.P., Cooperman, G., Cosmo, G., Cuttone, G., Daquino, G.G., Donszelmann, M., Dressel, M.,
Folger, G., Foppiano, F., Generowicz,
J., Grichine, V., Guatelli,
S., Gumplinger, P., Heikkinen,
A., Hrivnacova, I., Howard, A., Incerti,
S., Ivanchenko, V., Johnson, T., Jones, F., Koi, T., Kokoulin,
R., Kossov, M., Kurashige,
H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F., Maire,
M., Mantero, A., Mascialino,
B., McLaren, I., Mendez Lorenzo, P., Minamimoto, K.,
Murakami, K., Nieminen, P., Pandola,
L., Parlati, S., Peralta, L., Perl, J., Pfeiffer, A.,
Pia, M.G., Ribon, A., Rodrigues, P., Russo, G., Sadilov, S., Santin, G., Sasaki,
T., Smith, D., Starkov, N., Tanaka, S., Tcherniaev, E., Tomé, B., Trindade,
A., Truscott, P., Urban, L., Verderi, M., Walkden, A., Wellisch, J.P.,
Williams, D.C., Wright, D. & Yoshida, H. 2006. Geant4
developments and applications. IEEE Transactions on Nuclear Science 53
(1): 270-278.
Carinou,
E., Boziari, A., Askounis,
P., Mikulis, A. & Kamenopoulou,
V. 2008. Energy dependence of TLD 100 and
MCP-N detectors. Radiation Measurements 43(2-6): 599-602.
Eakins,
J.S., Bartlett, D.T., Hager, L.G., Molinos-Solsona,
C. & Tanner, R.J. 2008. The MCNP-4C2
design of a two element photon/electron dosemeter that uses magnesium/copper/ phosphorus doped lithium fluoride. Radiation
Protection Dosimetry 128(1): 21-35.
González,
P.R., Furetta, C. & Azorín,
J. 2007. Comparison of the TL responses of two different
preparations of LiF:Mg,Cu,P irradiated by photons of various energies. Applied Radiation and Isotopes 65(3):
341-344.
Guimarães,
C.C., Moralles, M. & Okuno,
E. 2007. GEANT4 simulation of the angular
dependence of TLD-based monitor response. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 580(1): 514-517.
Hranitzky,
C. & Stadtmann, H. 2007. Simulated and measured Hp(10) response of the personal dosemeter Seibersdorf. Radiation Protection Dosimetry 125(1-4):
166-169.
Hranitzky, C., Stadtmann, H. & Olko,
P. 2006. Determination of LiF:Mg,Ti and LiF:Mg,Cu,P TL efficiency for X-rays and their
application to Monte Carlo simulations of dosemeter response. Radiation Protection Dosimetry 119(1-4): 483-486.
Izewska,
J. & Rajan, G. 2003. Review
of Radiation Oncology Physics: A Handbook for Teachers and Students.
Vienna: IAEA.
Kadir,
A.B.A., Priharti, W. & Samat,
S.B. 2013. OSLD energy response performance and dose accuracy
at 24 - 1250 keV: Comparison with TLD-100H and
TLD-100. AIP Proceeding. pp. 108-114.
Lind,
D.A., Marchal, W.G. & Wathen,
S.A. 2008. Basic Statistics for Business and Economics. New York: McGraw-Hill.
Luo,
L.Z. & Rotunda, J.E. 2006. Performance of Harshaw TLD-100H two-element dosemeter. Radiation Protection Dosimetry 120(1-4): 324-330.
Moralles,
M., Guimarães, C.C. & Okuno,
E. 2005. Response of thermosluminescent dosimeters to photons simulated with the Monte Carlo method. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 545(1-2): 261-268.
Obryk, B., Hranitzky, C., Stadtmann,
H., Budzanowski, M. & Olko,
P. 2011. Energy response of different types of rados personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P)
TL detectors. Radiation Protection Dosimetry 144(1-4): 211-214.
Olko, P.
2006. Microdosimetry, track structure and the response of thermoluminescence detectors. Radiation Measurements 41(Suppl. 1(0)): S57-S70.
Olko, P.
2002. The microdosimetric one-hit
detector model for calculating the response of solid state detectors. Radiation
Measurements 35(3): 255-267.
Olko,
P., Bilski, P., Budzanowski,
M., Waligórski, M.P.R., Fasso,
A. & Ipe, N. 1999. Modelling of
the thermoluminescence response of LiF:Mg,Cu,P (MCP-N) detectors
after doses of low-energy photons. Radiation Protection Dosimetry 84(1-
4): 103-107.
Olko,
P., Bilski, P., Ryba, E.
& Niewiadomski, T. 1993. Microdosimetric interpretation of the anomalous photon
energy response of ultra-sensitive LiF:Mg,Cu,P TL dosemeters. Radiation Protection Dosimetry 47(1-4):
31-35.
Othman,
M.A.R., Cutajar, D.L., Hardcastle,
N., Guatelli, S. & Rosenfeld, A.B. 2010. Monte Carlo study of MOSFET packaging, optimised for
improved energy response: Single MOSFET filtration. Radiation Protection
Dosimetry 141(1): 10-17.
Priharti,
W., Samat, S.B & Kadir,
A.B.A. 2013. Uncertainty analysis of Hp(10)meas/Hp(10)del Ratio for TLD-100H at energy 24-1250 keV. Jurnal Teknologi (Sciences & Engineering) 62(3): 115-118.
Priharti,
W., Samat, S.B. & Kadir,
A.B.A. 2012. The study of Hp(10) and Hp(0.07)
responses for Harshaw TLD-100H at photon energy of
24-1250 keV. Paper read at 3rd Jogja International Conference on Physics Proceedings, at Yogyakarta, Indonesia.
Samat,
S.B. & Evans, C.J. 1992. Statistics
and Nuclear Counting – Theory, Problems and Solutions. Serdang: Universiti Pertanian Malaysia Press.
Samat,
S.B., Evans, C.J., Kadni, T. & Dolah, M.T. 2009. Malaysian
participation in the IAEA/WHO postal TLD and postal ionisation chamber intercomparison programmes:
Analysis of results obtained during 1985-2008. Radiation Protection
Dosimetry 133(3): 186-191.
Yoshida,
K., Hashiguchi, K., Taira, Y., Matsuda, N.,
Yamashita, S. & Takamura, N. 2012. Importance of personal dose equivalent evaluation in Fukushima in
overcoming social panic. Radiation Protection Dosimetry 151(1):
144-146.
*Pengarang untuk surat-menyurat;
email: sbsamat@ukm.edu.my