Sains Malaysiana 47(4)(2018): 661-670

http://dx.doi.org/10.17576/jsm-2018-4704-03

 

5-Aminolevulinic Acid Induces Regulation in Growth, Yield and Physio-Biochemical Characteristics of Wheat under Water Stress

(Asid 5-aminolevulinic Mengaruh Pengawalaturan terhadap Pertumbuhan, Hasilan dan Ciri Fisio-Biokimia Gandum pada Tekanan Air)

 

NUDRAT AISHA AKRAM1*, SHAMIM KAUSAR1, NAILA FARID1, MUHAMMAD ASHRAF2,3 & FAHAD AL-QURAINY3

 

1Department of Botany, Government College University Faisalabad Pakistan

 

2Pakistan Science Foundation Islamabad, Pakistan

 

3Department of Botany and Microbiology King Saud University Riyadh, Saudi Arabia

 

Diserahkan: 23 Mei 2017/Diterima: 30 Oktober 2017

 

 

ABSTRACT

 

The production of wheat crop is below average in many regions of the world which is ascribed to adverse environmental conditions including drought stress. The present study was conducted to appraise the beneficial role of exogenously- applied 5-aminolevulinic acid (ALA) on growth, yield and some key physio-biochemical characteristics of two commercially important wheat cultivars (Shafaq-06 and Uqab-2000) under well watered [100% field capacity (FC)] and water-deficit (60 and 80% FC) conditions. Imposition of varying water regimes significantly decreased fresh and dry weights of shoots, photosynthetic pigments (a and b), non-photochemical quenching of chlorophyll fluorescence (NPQ), quenching coefficient for non-photochemical (N) of chlorophyll fluorescence (qN), K+ (potassium ion), Ca2+ (Calcium ion) and P (phosphorus) accumulation in shoot and root and yield-related attributes. In contrast, water deficit regimes caused improvement in Fv/Fm (chlorophyll fluorescence measurement), coefficient of photochemical quenching (qP), proline, glycinebetaine (GB) and hydrogen peroxide (H2O2) contents. Foliar spray of ALA at the rate of 50, 100 and 150 mg/L along with control (no spray (NS) and/or water spray (WS)) significantly enhanced chlorophyll a and b pigments, qN, NPQ, qP, K+, Ca2+ and P accumulation in both roots and shoots, proline, GB, total phenolics and malondialdehyde (MDA) contents and yield. The wheat Shafaq-06 was better in shoot dry weight, qN, NPQ and Fv/Fm, shoot and root K+, root Ca2+, proline, GB accumulation and yield attributes, while Uqab-2000 was better in chlorophyll a contents, root P and MDA contents. Overall, better growth and yield of Shafaq-06 than Uqab-2000 under water deficit regimes was found to be associated with ALA improved leaf fluorescence (qN, NPQ and Fv/Fm), shoot and root K+, root Ca2+, proline and GB accumulation.

 

Keywords: Chlorophyll contents; drought stress; wheat; yield; 5-Aminolevulinic acid

 

 

ABSTRAK

 

Penghasilan tanaman gandum adalah di bawah purata di kebanyakan kawasan di dunia dianggap sebagai keadaan alam sekitar yang buruk termasuk tekanan kemarau. Kajian ini dijalankan untuk menilai kelebihan eksogen-aplikasi 5-aminolevulinik asid (ALA) terhadap pertumbuhan, hasilan dan ciri-ciri fisio-biokimia kedua-dua kultivar gandum yang komersial utama (Shafaq-06 dan Uqab-2000) dalam keadaan kecukupan air [100% keupayaan lading (FC)]  dan defisit air (60 dan 80% FC). Pengenaan rejim air yang berbeza telah mengurangkan berat segar dan kering tunas secara berkesan, pigmen fotosintetik (a dan b), pelindapan tanpa fotokimia fluoresens klorofil (NPQ), pekali pelindapan untuk tanpa fotokimia (N) fluoresens klorofil (qN), K+ (ion kalium), Ca2+ (ion kalsium) dan P (fosforus) pengumpulan pada tunas, akar serta sifat berkaitan hasilan. Sebaliknya, rejim defisit air menyebabkan penambahbaikan Fv/Fm (pengukuran fluoresens klorofil), pekali pelindapan fotokimia (qP), kandungan prolina, glycinebetaine (GB) dan hidrogen peroksida (H2O2). Semburan daun ALA pada kadar 50, 100 dan 150 mg/L selari dengan kawalan (tanpa semburan (NS) dan semburan air (WS)) meningkat dengan ketara pengumpulan pigmen klorofil a dan b, qN, NPQ, qP, K+, Ca2+ dan P pada akar dan tunas, serta kandungan dan hasilan prolina, GB, jumlah fenolik dan malondialdehid (MDA). Gandum Shafaq-06 lebih baik dalam berat kering tunas, qN, NPQ dan Fv/Fm, tunas dan akar K+, tunas dan akar Ca2+, prolina, pengumpulan GB dan sifat hasilan, manakala Uqab-2000 lebih baik dalam kandungan klorofil a, tunas P dan kandungan MDA. Keseluruhannya, pertumbuhan dan hasilan Shafaq-06 lebih baik daripada Uqab-2000 dalam regim defisit air adalah berkaitan dengan ALA yang dapat menambahbaik flurosens daun (qN, NPQ, dan Fv/Fm), tunas dan akar K+, akar Ca2+, prolina dan pengumpulan GB.

 

Kata kunci: Asid 5-aminolevulinik; gandum; hasilan; kandungan klorofil; tekanan kemarau

 

RUJUKAN

Akram, N.A. & Ashraf, M. 2011a. Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pakistan Journal of Botany 43: 521-530.

Akram, N.A. & Ashraf, M. 2011b. Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55: 94-104.

Akram, N.A. & Ashraf, M. 2013. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid (ALA). Journal of Plant Growth Regulation 32: 663-679.

Akram, N.A., Shahbaz, M. & Ashraf, M. 2007. Relationship of photosynthetic capacity and proline accumulation with the growth of differently adapted populations of two potential grasses (Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L.) to drought stress. Pakistan Journal of Botany 39: 777-786.

Al-Khateeb, S.A. 2006. Promotive effect of 5-aminolevulinic acid on growth, yield and gas exchange capacity of barley (Hordeum vulgare L.) grown under different irrigation regimes. Journal of the Saudi Society of Agricultural Sciences 18: 103-111.

Al-Thabet, S.S. 2006. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. Journal of Agronomy 5: 45-49.

Arnon, D.T. 1949. Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15.

Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84-93.

Ashraf, M., Akram, N.A., Al-Qurainy, F. & Foolad, M.R. 2011. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy 111: 249-296.

Ashraf, M. & Khanum, A. 1997. Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. Journal of Agronomy and Crop Science 178: 39-51.

Bates, L.S., Waldren, R.P. & Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Science 39: 205-207.

Carmak, I. & Horst, J.H. 1991. Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468.

Cha-um, S., Samphumphuang, T. & Kirdmanee, C. 2013. Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Australian Journal of Crop Science 7: 213-218.

Dolatabadian, A., Sanavi, A.M. & Sharifi, M. 2009. Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea mays L. Journal of Agronomy and Crop Science 195: 347-355.

Duke, S.O. & Rebeiz, C.A. 1994. Porphyrin biosynthesis as a tool in pest management: An overview. In Porphyric Pesticides: Chemistry, Toxicology and Pharmaceutical Applications, edited by Duke, S.O. & Rebeiz, C.A. Washington: American Chemical Society. pp. 1-17.

Grieve, C.M. & Grattan, S.R. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil 70: 303-307.

Iqbal, N., Ashraf, M.Y. & Ashraf, M. 2005. Influence of water stress and exogenous glycinebetaine on sunflower achene weight and oil percentage. International Journal of Environmental Science and Technology 2: 155-160.

Jackson, M.L. 1962. Soil Chemical Analysis. London: Contable Co. Ltd.

Julkenen-Titto, R. 1985. Phenolic constituents in the leaves   of northern willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33: 213-217.

Korkmaz, A., Korkmaz, Y. & Demirkiran, A.R. 2010. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental and Experimental Botany 67: 495-501.

Li, D., Zhang, J., Sun, W., Li, Q., Dai, A. & Bai, J. 2011. 5-aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Scientia Horticulturae 130: 820-828.

Liu, D., Wu, L., Naeem, M.S., Liu, H., Deng, X., Xu, L., Zhang,F. & Zhou, W. 2013. 5-minolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiologiae Plantarum 9: 2747-2759.

Liu, D., Pei, Z.F., Naeem, M.S., Ming, D.F., Liu, H.B., Khan, F. & Zhou, W.J. 2011. 5-minolevulinic acid activates antioxidative defense system and seedling growth in Brassica napus L. under water deficit stress. Journal of Agronomy and Crop Science 197: 284-295.

Liu, W.Q., Kang, L. & Wang, L.J. 2006.  Effect of 5-aminolevulinic acid (ALA) on photosynthesis and its relationship with antioxidant enzymes of strawberry leaves. Acta Botany Boreal-Occident Sinica 26: 57-62.

Maruyama-Nakashita, A., Hira, M.Y., Funada, S. & Fuek, S. 2010. Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana. Soil Science and Plant Nutrition 56: 281-288.

Metwaly, M.M. 2012. Ecophysiological and anatomical responses of drought stressed wheat plants (Triticum aestivum L.) treating with some bacterial endophytes. Ph.D. Thesis, Faculty of Agriculture, Kafre El-Sheikh University, Kafre El-Sheikh, Egypt (Unpublished).

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sciences 7: 405-410.

MSTAT Development Team. 1989. MSTAT User’s Guide: A Microcomputer Program for the Design Management and Analysis of Agronomic Research Experiments. Michigan State University, East Lansing.

Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama, K., Takeuchi, Y. & Zhou, W.J. 2011. 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiologiae Plantarum 33: 517- 528.

Naeem, M.S., Jin, Z.L., Wan, Z.L., Liu, D., Liu, H.B., Yoneyama, K. & Zhou, W.J. 2010. 5-inolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil 332: 405-415.

Navari-Izzo, F., Pinzino, C., Quartacci, M.F. & Sgherri, C.L.M. 1994. Intracellular membranes: Kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proceedings of the Royal Society of Edinburgh 102B: 187-191.

Nezhadahmadi, A., Prodhan, Z.H. & Faruq, G. 2013. Drought tolerance in wheat. Scientific World Journal 2013: 610721.

Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K. & Tanaka, K. 2003. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). Journal of Plant Physiology 60: 1085-1091.

Pervez, M.A., Ayub, C.M., Khan, H.A., Shahid, M.A. & Ashraf, I. 2009. Effect of drought stress on growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pakistan Journal of Agricultural Sciences 46: 174-178.

Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R. & Panneerselvam, R. 2007. Drought- induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Botanica Croatica 66: 43-56.

Strasser, R.J., Srivastava, A. & Govindgee. 1995. Polyphasic chlorophyll a flouresence transient in plants and cynobacteria. Photochemistry and Photobiology 61(1): 32-42.

Velikova, V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Science 151: 59-66.

Wang, L.J., Jiang, W.B., Liu, H., Liu, W.Q., Kang, L. & Hou, X.L. 2005. Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. Chinensis var. communis Tsen et Lee) seeds under salt stress. Journal of Integrative Plant Biology 47: 1084-1091.

Wang, L.J., Shi, W., Liu, H., Liu, W.Q., Jiangm, W.B. & Hou, X.L. 2004. Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pakchoi. Journal of Nanjing Agricultural University 47: 1084-1091.

Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H. & Ohara, H. 2003. Biosynthesis and physiological activities of 5-aminolevulinic acid (ALA) and its potential application in agriculture. Plant Physiology Communications 39: 185-192.

Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H. & Takeuchi, Y. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation 32: 99-103.

Wolf, B. 1982. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13: 1035-1059.

Youssef, T. & Awad, M.A. 2008. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. Journal of Plant Growth Regulation 27: 1-9.

Zhang, J., Gao, Y., Yu, B., Xia, C.X. & Bai, J.G. 2012. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biologia Plantarum 56: 780-784.

 

*Corresponding author; email: nudrataauaf@yahoo.com

 

 

 

 

 

sebelumnya