Sains Malaysiana 47(4)(2018): 661-670
http://dx.doi.org/10.17576/jsm-2018-4704-03
5-Aminolevulinic Acid Induces Regulation in Growth, Yield and Physio-Biochemical
Characteristics of Wheat under Water Stress
(Asid 5-aminolevulinic Mengaruh Pengawalaturan terhadap Pertumbuhan, Hasilan dan Ciri Fisio-Biokimia
Gandum pada
Tekanan Air)
NUDRAT AISHA
AKRAM1*, SHAMIM KAUSAR1, NAILA FARID1,
MUHAMMAD ASHRAF2,3 & FAHAD AL-QURAINY3
1Department of
Botany, Government College University
Faisalabad Pakistan
2Pakistan Science
Foundation Islamabad, Pakistan
3Department of
Botany and Microbiology King Saud University Riyadh, Saudi Arabia
Diserahkan: 23 Mei 2017/Diterima: 30 Oktober 2017
ABSTRACT
The production of wheat crop
is below
average in many
regions of the world
which is ascribed
to adverse environmental conditions including drought
stress. The present study was conducted to appraise the beneficial
role of exogenously- applied
5-aminolevulinic acid
(ALA) on growth, yield
and some key
physio-biochemical characteristics of two commercially
important wheat cultivars (Shafaq-06 and Uqab-2000) under well watered [100%
field capacity
(FC)] and water-deficit (60 and 80% FC) conditions. Imposition of varying water
regimes significantly decreased fresh
and dry weights of shoots,
photosynthetic pigments (a and b), non-photochemical quenching of chlorophyll fluorescence (NPQ),
quenching coefficient
for non-photochemical (N) of chlorophyll fluorescence (qN), K+
(potassium ion), Ca2+ (Calcium ion)
and P (phosphorus)
accumulation in shoot and root and yield-related attributes. In
contrast, water deficit regimes caused improvement in Fv/Fm (chlorophyll fluorescence measurement), coefficient
of photochemical quenching (qP),
proline, glycinebetaine (GB) and hydrogen peroxide
(H2O2)
contents. Foliar
spray of ALA at the rate of 50, 100 and 150 mg/L
along with control
(no spray (NS) and/or water spray (WS)) significantly enhanced chlorophyll
a and b pigments, qN, NPQ, qP,
K+, Ca2+ and P accumulation in both
roots and shoots, proline, GB, total phenolics
and malondialdehyde (MDA) contents and yield. The wheat Shafaq-06
was better in shoot dry weight, qN, NPQ
and Fv/Fm,
shoot and root K+, root Ca2+, proline, GB
accumulation and yield attributes, while Uqab-2000 was better in
chlorophyll a contents, root P and MDA contents. Overall, better
growth and yield of Shafaq-06 than Uqab-2000 under water deficit
regimes was found to be associated with ALA improved leaf fluorescence (qN, NPQ and Fv/Fm), shoot and root K+, root Ca2+,
proline and GB accumulation.
Keywords: Chlorophyll contents; drought stress; wheat; yield;
5-Aminolevulinic acid
ABSTRAK
Penghasilan tanaman gandum adalah di bawah purata di kebanyakan kawasan di dunia dianggap sebagai keadaan alam sekitar
yang buruk termasuk
tekanan kemarau. Kajian ini dijalankan
untuk menilai
kelebihan eksogen-aplikasi 5-aminolevulinik
asid (ALA) terhadap
pertumbuhan, hasilan
dan ciri-ciri fisio-biokimia
kedua-dua kultivar
gandum yang komersial utama (Shafaq-06 dan Uqab-2000)
dalam keadaan kecukupan
air [100% keupayaan lading (FC)] dan defisit air (60 dan 80% FC). Pengenaan rejim air yang berbeza telah mengurangkan
berat segar
dan kering tunas secara berkesan, pigmen fotosintetik (a dan b), pelindapan tanpa fotokimia fluoresens klorofil (NPQ), pekali pelindapan untuk tanpa fotokimia
(N) fluoresens klorofil
(qN), K+ (ion kalium),
Ca2+ (ion kalsium) dan
P (fosforus) pengumpulan pada tunas, akar serta sifat berkaitan
hasilan. Sebaliknya,
rejim defisit air menyebabkan penambahbaikan Fv/Fm (pengukuran fluoresens klorofil), pekali pelindapan fotokimia (qP), kandungan prolina, glycinebetaine (GB)
dan
hidrogen peroksida (H2O2). Semburan daun ALA pada kadar 50, 100 dan 150 mg/L selari dengan kawalan (tanpa semburan (NS) dan semburan air (WS)) meningkat dengan ketara pengumpulan pigmen klorofil a dan b, qN, NPQ, qP, K+, Ca2+ dan P pada akar
dan tunas, serta
kandungan dan hasilan
prolina, GB, jumlah
fenolik dan malondialdehid
(MDA). Gandum Shafaq-06 lebih
baik dalam berat kering tunas, qN, NPQ dan Fv/Fm, tunas dan akar K+, tunas dan akar Ca2+, prolina, pengumpulan GB dan sifat hasilan, manakala Uqab-2000 lebih
baik
dalam kandungan klorofil a, tunas
P dan kandungan MDA.
Keseluruhannya, pertumbuhan dan hasilan Shafaq-06 lebih baik daripada
Uqab-2000 dalam regim
defisit air adalah berkaitan dengan ALA yang
dapat
menambahbaik flurosens daun (qN, NPQ,
dan Fv/Fm), tunas
dan akar K+,
akar Ca2+, prolina
dan pengumpulan GB.
Kata kunci: Asid 5-aminolevulinik; gandum; hasilan; kandungan klorofil; tekanan kemarau
RUJUKAN
Akram, N.A. & Ashraf, M. 2011a. Pattern of accumulation of inorganic elements in sunflower
(Helianthus annuus
L.) plants subjected to salt stress and exogenous application
of 5-aminolevulinic acid. Pakistan Journal of Botany 43: 521-530.
Akram, N.A. & Ashraf, M. 2011b. Improvement in growth, chlorophyll pigments
and photosynthetic performance in salt-stressed plants of sunflower
(Helianthus annuus
L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55: 94-104.
Akram, N.A. & Ashraf, M. 2013. Regulation in plant stress tolerance by a potential plant
growth regulator, 5-aminolevulinic acid (ALA). Journal of Plant Growth Regulation 32: 663-679.
Akram, N.A., Shahbaz,
M. & Ashraf, M. 2007.
Relationship of photosynthetic capacity and proline accumulation
with the growth of differently adapted populations
of two potential grasses (Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L.) to drought stress. Pakistan Journal of Botany 39: 777-786.
Al-Khateeb,
S.A. 2006. Promotive effect of 5-aminolevulinic acid on growth,
yield and gas exchange capacity of barley (Hordeum vulgare L.)
grown under different irrigation regimes. Journal
of the Saudi Society of Agricultural Sciences 18: 103-111.
Al-Thabet, S.S. 2006. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under
dry conditions. Journal of Agronomy 5: 45-49.
Arnon, D.T. 1949. Copper enzyme in isolated
chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15.
Ashraf, M. 2009. Biotechnological approach
of improving plant salt tolerance using antioxidants as markers. Biotechnology
Advances 27: 84-93.
Ashraf, M., Akram, N.A., Al-Qurainy, F. &
Foolad, M.R. 2011. Drought tolerance: Roles of organic osmolytes,
growth regulators, and mineral nutrients. Advances
in Agronomy 111: 249-296.
Ashraf, M. & Khanum, A. 1997. Relationship between
ion accumulation and growth in two spring
wheat lines differing in salt tolerance at different
growth stages. Journal
of Agronomy and Crop Science 178: 39-51.
Bates, L.S., Waldren, R.P. & Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Science 39: 205-207.
Carmak, I. & Horst, J.H. 1991. Effects of aluminium
on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean
(Glycine max). Physiologia Plantarum 83:
463-468.
Cha-um, S., Samphumphuang, T. & Kirdmanee,
C. 2013. Glycinebetaine
alleviates water deficit stress in indica
rice using proline accumulation, photosynthetic efficiencies, growth
performances and yield attributes. Australian
Journal of Crop Science 7: 213-218.
Dolatabadian,
A., Sanavi, A.M.
& Sharifi, M. 2009. Alleviation of water deficit stress effects by foliar
application of ascorbic
acid on Zea mays L.
Journal of Agronomy and Crop Science
195: 347-355.
Duke, S.O.
& Rebeiz, C.A.
1994. Porphyrin biosynthesis as a tool in
pest management: An
overview.
In Porphyric Pesticides: Chemistry, Toxicology
and Pharmaceutical Applications, edited by Duke, S.O.
& Rebeiz, C.A.
Washington: American Chemical Society. pp. 1-17.
Grieve, C.M. & Grattan, S.R. 1983. Rapid assay
for determination
of water soluble quaternary ammonium compounds. Plant and Soil 70: 303-307.
Iqbal, N., Ashraf,
M.Y. & Ashraf, M. 2005.
Influence of water stress and exogenous glycinebetaine
on sunflower achene weight and oil percentage. International Journal of Environmental Science and Technology 2: 155-160.
Jackson, M.L. 1962. Soil Chemical Analysis.
London: Contable
Co. Ltd.
Julkenen-Titto, R. 1985. Phenolic constituents in the leaves of northern willows:
Methods for the analysis of certain phenolics.
Journal of Agricultural and
Food Chemistry 33: 213-217.
Korkmaz,
A., Korkmaz, Y. &
Demirkiran,
A.R. 2010. Enhancing chilling stress tolerance of pepper seedlings
by exogenous application of 5-aminolevulinic acid. Environmental and
Experimental Botany 67:
495-501.
Li, D., Zhang, J., Sun, W., Li, Q., Dai, A. & Bai, J.
2011. 5-aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering
antioxidant enzyme activity. Scientia
Horticulturae 130: 820-828.
Liu, D., Wu, L.,
Naeem, M.S., Liu,
H., Deng,
X., Xu,
L., Zhang,F. & Zhou, W. 2013.
5-minolevulinic acid enhances
photosynthetic gas exchange, chlorophyll fluorescence and antioxidant
system in
oilseed rape
under drought stress.
Acta Physiologiae Plantarum 9: 2747-2759.
Liu, D., Pei, Z.F., Naeem,
M.S., Ming, D.F., Liu, H.B., Khan, F. & Zhou, W.J. 2011. 5-minolevulinic acid activates antioxidative
defense system and seedling growth in Brassica
napus L. under water deficit stress.
Journal of Agronomy and Crop Science 197:
284-295.
Liu, W.Q., Kang, L. &
Wang, L.J. 2006. Effect of 5-aminolevulinic
acid (ALA) on photosynthesis and its relationship with antioxidant
enzymes of strawberry leaves.
Acta Botany Boreal-Occident Sinica 26: 57-62.
Maruyama-Nakashita, A., Hira, M.Y., Funada, S. &
Fuek, S. 2010. Exogenous
application of 5-aminolevulinic acid increases the transcript levels
of sulfur transport and assimilatory genes,
sulfate uptake,
and cysteine and glutathione contents in Arabidopsis thaliana. Soil Science
and Plant Nutrition 56: 281-288.
Metwaly, M.M. 2012. Ecophysiological and anatomical responses
of drought stressed wheat plants (Triticum aestivum L.) treating with some bacterial
endophytes. Ph.D. Thesis, Faculty of Agriculture, Kafre
El-Sheikh University, Kafre
El-Sheikh, Egypt (Unpublished).
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance.
Trends in Plant Sciences 7:
405-410.
MSTAT Development
Team. 1989. MSTAT User’s
Guide: A Microcomputer Program for the Design Management and Analysis
of Agronomic Research Experiments. Michigan State
University, East Lansing.
Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama,
K., Takeuchi, Y. & Zhou, W.J. 2011.
5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related
and biochemical changes in Brassica
napus L. Acta Physiologiae Plantarum 33: 517-
528.
Naeem, M.S., Jin, Z.L.,
Wan,
Z.L., Liu,
D., Liu, H.B., Yoneyama, K. & Zhou, W.J. 2010. 5-inolevulinic
acid improves photosynthetic
gas exchange
capacity and ion
uptake under salinity stress in oilseed
rape (Brassica napus L.).
Plant and Soil 332: 405-415.
Navari-Izzo, F.,
Pinzino, C., Quartacci,
M.F. & Sgherri,
C.L.M. 1994. Intracellular membranes: Kinetics of superoxide production
and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proceedings of the
Royal Society of Edinburgh 102B:
187-191.
Nezhadahmadi, A., Prodhan, Z.H. & Faruq,
G. 2013. Drought tolerance in wheat. Scientific World
Journal 2013: 610721.
Nishihara, E., Kondo, K.,
Parvez, M.M., Takahashi,
K., Watanabe, K.
& Tanaka, K. 2003. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated
spinach (Spinacia oleracea).
Journal of Plant Physiology
60: 1085-1091.
Pervez, M.A., Ayub, C.M., Khan, H.A., Shahid, M.A. & Ashraf,
I. 2009. Effect of drought stress on growth, yield and seed quality
of tomato (Lycopersicon esculentum L.). Pakistan Journal of
Agricultural Sciences 46: 174-178.
Sankar, B., Jaleel, C.A., Manivannan,
P., Kishorekumar,
A., Somasundaram, R. & Panneerselvam,
R. 2007. Drought- induced biochemical modifications and proline
metabolism in Abelmoschus esculentus (L.)
Moench.
Acta Botanica Croatica
66: 43-56.
Strasser, R.J., Srivastava, A. & Govindgee. 1995.
Polyphasic chlorophyll a flouresence transient in plants
and cynobacteria. Photochemistry and Photobiology
61(1): 32-42.
Velikova, V., Yordanov, I. & Edreva, A. 2000.
Oxidative stress and some antioxidant systems in acid rain-treated
bean plants. Protective role of exogenous
polyamines. Plant Science
151: 59-66.
Wang, L.J., Jiang, W.B., Liu,
H., Liu,
W.Q.,
Kang, L. & Hou, X.L. 2005. Promotion by
5-aminolevulinic acid
of germination of pakchoi (Brassica campestris ssp.
Chinensis
var. communis Tsen et Lee) seeds under salt stress. Journal of Integrative Plant Biology 47: 1084-1091.
Wang, L.J., Shi, W., Liu, H., Liu, W.Q., Jiangm, W.B. & Hou, X.L. 2004.
Effects of exogenous 5-aminolevulinic acid treatment
on leaf photosynthesis of pakchoi.
Journal of Nanjing Agricultural University
47: 1084-1091.
Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H. & Ohara, H.
2003. Biosynthesis
and physiological activities of
5-aminolevulinic acid
(ALA) and its potential
application in agriculture. Plant Physiology Communications 39: 185-192.
Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H.
& Takeuchi, Y. 2000.
Improving salt tolerance of cotton seedlings with 5-aminolevulinic
acid. Plant Growth
Regulation 32: 99-103.
Wolf, B. 1982. A comprehensive system of leaf analysis
and its use for
diagnosing crop
nutrient status. Communications in Soil Science and Plant Analysis 13: 1035-1059.
Youssef, T. & Awad, M.A. 2008. Mechanisms
of enhancing photosynthetic gas exchange
in date palm seedlings
(Phoenix
dactylifera L.) under salinity stress by a 5-aminolevulinic
acid-based fertilizer. Journal
of Plant Growth Regulation 27: 1-9.
Zhang, J., Gao, Y., Yu, B., Xia,
C.X. & Bai, J.G. 2012. Pretreatment
with 5-aminolevulinic acid mitigates heat stress of cucumber leaves.
Biologia Plantarum 56:
780-784.
*Corresponding author; email: nudrataauaf@yahoo.com
|