Sains Malaysiana 47(7)(2018): 1585–1590
http://dx.doi.org/10.17576/jsm-2018-4707-29
Kesan
Penambahan Tiubnano Karbon terhadap Pertumbuhan Lapisan Sebatian antara Logam
Sistem Pateri Sn-Ag-Cu/Cu akibat Penuaan Terma
(Effect
of Carbon Nanotube Addition on the Growth of Intermetallic Layer of Sn-Ag-Cu
Solder System under Thermal Aging)
NORLIZA ISMAIL1, AZMAN JALAR1*, MARIA ABU BAKAR1 & ROSLINA ISMAIL2
1Institute of Microengineering and Nanoelectronic (IMEN), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Division of Fine Arts, Cultural Centre, University of Malaya
(UM), 50603 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan: 15 September 2017/Diterima: 8
Mac 2018
ABSTRAK
Kesan tiubnano karbon (CNT)
terhadap pertumbuhan lapisan sebatian antara logam (IMC)
bagi sistem pateri bebas plumbum 96.5Sn-3.0Ag-0.5Cu/substrat Cu
telah dikaji. Serbuk aloi Sn-Ag-Cu (SAC305) dicampurkan dengan 0.02 peratus
berat CNT untuk menghasilkan pes pateri SAC305-CNT.
Kedua-dua pes pateri SAC305 dan SAC305-CNT dicetak
secara manual di atas permukaan papan litar bercetak (PCB)
dengan kemasan kuprum (Cu) menggunakan kaedah percetakan stensil.
Sampel yang telah dicetak dikenakan proses pematerian aliran semula
pada suhu 260°C. Sampel yang sudah terpateri dikenakan ujian
penuaan terma selama 200, 400, 600, 800 dan 1000 jam menggunakan
ketuhar penyimpanan suhu tinggi (HTS)
pada suhu malar iaitu 150°C. Ketebalan lapisan sebatian antara
logam (IMC)
diukur menggunakan alat Pengukuran Fokus Tak Terhingga (IFM®). Keputusan kajian mendapati kadar
pertumbuhan lapisan IMC bagi
sistem SAC305/Cu-CNT adalah 25% lebih rendah berbanding
dengan sistem SAC/Cu. Maka, dicadangkan bahawa penambahan
CNT boleh merencatkan pertumbuhan lapisan IMC sebanyak
25% akibat penuaan terma.
Kata kunci: Jerapan tiubnano karbon;
pateri Sn-Ag-Cu; pertumbuhan lapisan antara logam; resapan; tiubnano karbon
ABSTRACT
Effect of carbon nanotube (CNT)
on the growth of intermetallic compound (IMC) layer of 96.5Sn-3.0Ag-0.5Cu/Cu
substrate lead free solder system has been investigated. Sn-Ag-Cu
alloy powder (SAC305) was mixed with 0.02 weight percent
of CNT to produce SAC-CNT solder paste. Both SAC305
and SAC305-CNT solder paste has been manually
printed on the printed circuit board (PCB)
with the copper (Cu) surface finish by using stencil printing
method. Printed samples were reflowed at temperature 260°C.
Soldered samples underwent thermal aging test for the period of
200, 400, 600, 800 and 1000 h using high temperature storage (HTS) oven at a constant temperature 150°C.
The thickness of IMC layer was measured by Infinite
Focus Measurement (IFM®) equipment. The results found that growth
rates of IMC layer
for SAC305/Cu-CNT system is 25% lower than SAC/Cu
system. Therefore, addition of CNT proposed can retard about
25% of IMC layer growth under thermal aging.
Keywords:
Carbon nanotube; carbon nanotube adsorption; diffusion; intermetallic layer
growth; Sn-Ag-Cu solder
RUJUKAN
Bakar, M.A.,
Jalar, A., Daud, A.R., Ismail, R., Lah, N.A.C. & Ibrahim, N.S. 2016.
Nanoindentation approach on investigating micromechanical properties of joining
from green solder materials. Sains Malaysiana 45(8): 1275-1279.
Chang, S.Y.,
Jain, C.C., Chuang, T.H., Feng, L.P. & Tsao, L.C. 2011. Effect of addition
of TiO2 nanoparticles on the microstructure,
microhardness and interfacial reactions of Sn3.5AgXCu solder. Materials and
Design 32: 4720-4727.
Dele-Afolabi,
T.T., Hanim, M.A., Norkhairunnisa, M., Yusoff, H.M. & Suraya, M.T. 2015.
Growth kinetics of intermetallic layer in lead-free Sn-5Sb solder reinforced
with multi-walled carbon nanotubes. Journal Mater Sci: Mater Electron. 26:
8249-8259.
Eid, E.A.,
Fouda, A.N. & Duraia, E.S.M. 2016. Effect of adding 0.5 wt% ZnO
nanoparticles, temperature and strain rate on tensile properties of
Sn–5.0 wt% Sb–0.5 wt% Cu (SSC505) lead free solder alloy. Materials
Science and Engineering: A 657: 104-114.
Han, Y.D.,
Jing, H.Y., Nai, S.M.L., Xu, L.Y., Tan, C.M. & Wei, J. 2012. Interfacial
reaction and shear strength of Ni-coated carbon nanotubes reinforced Sn-Ag-Cu
solder joints during thermal cycling. Intermetallics 31: 72-78.
Han,
Y.D., Jing, H.Y., Nai, S.M.L., Xu, L.Y., Tan, C.M. & Wei, J. 2009. Effect
of Ni-coated carbon nanotubes on interfacial intermetallic layer growth. Electronics
Packaging Technology Conference. pp. 292-295.
Harris, P.G. & Chaggar, K.S. 1998.
The role of intermetallic compound in lead-free soldering. Soldering &
Surface Mount Technology 10(3): 38-52.
Kang, S.K., Choi, W.K., Yim, M.J. &
Shih, D.Y. 2002. Studies of the mechanical and electrical properties of
lead-free solder joints. Journal of Electronic Materials 31(11):
1292-1303.
Kim, D. & Jung, S. 2005. Interfacial
reactions and growth kinetics for intermetallic compound layer between In-48Sn
solder and bare Cu substrate. Journal of Alloys and Compounds 386:
151-156.
Krystyna, B., Janusz, S., Marek, K.,
Wojciech, N., Anna, M. & Malgorzata, J. 2013. SAC solder with carbon
nanotubes. Part II: carbon nanotubes effect on solder joints mechanical
properties and microstructure. Soldering & Surface Mount Technology 25(4):
195-208.
Li, Y., Zhao, X., Liu, Y., Wang, Y. &
Wang, Y. 2014. Effect of TiO2 addition concentration on the wettability and
intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite
solders. J. Mater. Sci: Mater. Electron. 25(9): 3816-3827.
Liang, Z. & Tu, K.N. 2014. Structure
and properties of lead-free solders bearing micro and nano particles. Materials
Science and Engineering R 82: 1-32.
Liu, M.L. & Ahmad, A.M. 2013.
Interfacial reaction of Sn-Ag-Cu lead-free solder alloy on Cu: A review. Advances
in Materials Science and Engineering 2013: Article ID 123697.
Mayappan, R., Yahya, I., Ab Ghani, N.A.
& Hamid, H.A. 2014. The effect of adding Zn into the Sn–Ag–Cu
solder on the intermetallic growth rate. J. Mater Sci: Mater. Electron. 25(7):
2913-2922.
Mehrabi, K., Khodabakhshi, F., Zareh, E.,
Shahbazkhan, A. & Simchi, A. 2016. Effect of alumina nanoparticles on the
microstructure and mechanical durability of meltspun lead-free solders based on
tin alloys. Journal of Alloys and Compounds 688: 143-155.
Nai, S.M.L., Gupta, M. & Wei, J.
2008. Suppressing intermetallic compound growth in SnAgCu solder joints with
addition of carbon nanotubes. 2nd IEEE International. pp. 15-19.
Nai, S.M.L., Wei, J. & Gupta, M.
2009. Interfacial intermetallic growth and shear strength of lead-free
composite solder joints. Journal of Alloys and Compounds 473: 100-106.
Nor, A.M., Badariah, B. & Ibrahim, A.
2014. Reflow soldering process for Sn3.5Ag solder on ENIG using rapid thermal
processing system. Sains Malaysiana 43(1): 117-122.
Roshanghias, A., Kokabi, A.H., Miyashita,
Y., Mutoh, Y. & Madaah, H.H.R. 2013. Formation of intermetallic reaction
layer and joining strength in nano-composite solder joint. J. Mater. Sci:
Mater. Electron. 24: 839-847.
Ren, S., Yanwei, S., Jiqiu, Q., Fuxiang,
W., Yezeng, H., Xiao, C., Qingkun, M. & Zhi, S. 2017. Influence of SnO2
nanoparticles addition on microstructure, thermal analysis and interfacial IMC
growth of Sn1.0Ag0.7Cu solder. Journal of Electronic Materials 46(7):
4197-4205.
Tama, F., Chan, Y.C. & Chan, D.K.
2014. Influence of cerium oxide (CeO2) nanoparticles on the
microstructure and hardness of tin–silver–copper
(Sn–Ag–Cu) solders on silver (Ag) surface-finished copper (Cu)
substrates. J. Mater. Sci: Mater. Electron 25: 5375-5387.
Tan, A.T., Tan, A.W. & Farazila, Y.
2015. Influence of nanoparticle addition on the formation and growth of
intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different
thermal conditions. Sci. Technol. Adv. Mater. 16(3): 033505.
Tsao, L.C. 2011. Suppressing effect of
0.5 wt.% nano- TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on
the intermetallic growth with Cu substrate during isothermal aging. Journal
of Alloys and Compounds 509: 8441-8448.
Yang, M., Ji, H.J., Wang, S., Ko, Y.H.,
Lee, C.W., Wu, J.X. & Li, M.Y. 2016. Effects of Ag content on the
interfacial reactions between liquid Sn–Ag–Cu solders and Cu
substrates during soldering. Journal of Alloys and Compounds 679:
18-25.
Young, M.K., Kyoung, M.H. & Young,
H.K. 2010. Mechanism of the delayed growth of intermetallic compound at the
interface between Sn-4.0Ag-0.5Cu and Cu-Zn substrate. Electronic Materials
Letters 6(4): 151-154.
*Pengarang untuk surat-menyurat;
email: azmn@ukm.my