| Sains Malaysiana 48(12)(2019): 2841–2847    http://dx.doi.org/10.17576/jsm-2019-4812-25 
                
             
           Vibrational Analysis of
            Microtubules Embedded within Viscoelastic Medium using Orthotropic Kelvin like
            Model
            
           (Analisis
            Getaran Bermikrotubul Tertanam dalam Medium Likat Kenyal menggunakan Model seperti
            Ortotropisme Kelvin)
            
           
             
           MUHAMMAD SAFEER1,2 & MUHAMMAD TAJ1*
            
           
             
           1Department
            of Mathematics, The University of Azad Kashmir, Muzaffarabad 13100, Pakistan
            
           
             
           2Department
            of Mathematics, University of Poonch Rawalwkot, Azad Kashmir
            
           
             
           Diserahkan: 5 Mac
            2019/Diterima: 23 Disember 2019
            
           
             
           ABSTRACT
            
           Microtubules, the key components of cytoskeleton of all living
            cells, are important for maintaining the cell shape and transporting the
            cellular organelles. Understanding the mechanics of microtubules is very
            important for these functions. Mechanics of these components are greatly
            affected when they are embedded in cells. To understand the mechanical
            properties of microtubules in living cells, we developed an orthotropic-Kelvin
            like model and investigated the vibrational behavior when they are embedded in
            surrounding elastic medium. We considered them as orthotropic elastic shell and
            its surrounding elastic matrix as Kelvin model. We found that due to mechanical
            coupling of these components with the elastic medium, the flexural vibration is
            increased and radial frequencies in all modes are increased considerably while
            other vibrational modes are not affected that much.
            
           Keywords: Elastic medium; Kelvin foundation; microtubules;
            vibration
            
           
             
           ABSTRAK
            
           Mikrotubul merupakan komponen utama sita rangka bagi semua sel
            hidup dan adalah penting untuk mengekalkan bentuk sel dan membawa organel sel.
            Memahami mekanik mikrotubul adalah sangat penting bagi fungsi tersebut. Mekanik
            untuk komponen ini adalah sangat terkesan apabila mereka terbenam di dalam sel.
            Untuk memahami sifat mekanik mikrotubul dalam sel hidup, kami telah
            membangunkan model seperti Ortotropik-Kelvin dan mengkaji tingkah laku getaran
            apabila ia dibenamkan di persekitaran medium kenyal. Kami menganggap ia sebagai
            kelongsong kenyal Ortotropik dan persekitaran matrik kenyal sebagai model
            Kelvin. Kami telah mendapati bahawa kesan daripada gandingan mekanik oleh
            komponen ini dengan medium kenyal dan getaran lentur adalah meningkat dan
            frekuensi radial di dalam semua mod adalah meningkat dengan ketara manakala
            mod-mod getaran yang lain tidak begitu banyak yang terkesan.
            
           Kata kunci: Asas Kelvin; getaran; medium kenyal; mikrotubul
            
           RUJUKAN
            
           Adames, N.R. & Cooper, J.A. 2000. Microtubule interactions with
            the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J.
              Cell Biol. 149(4): 863-874.
  
           Boykov, I., Boykova, A. & Ventsel, E. 2004. Fundamental
            solutions for thick sandwich plates. Engineering Analysis with Boundary
              Elements 28(12): 1437-1444.
  
           Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A.,
            Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E. & Weitz, D.A. 2006.
            Microtubules can bear enhanced compressive loads in living cells because of
            lateral reinforcement. J. Cell Biol. 173(5): 733-741.
  
           Burton, G.W. & Forbes, I. 1960. The genetics and manipulation
            of obligate apomixis in common Bahia grass Pas-palum notatum Flügge. Paper
            presented at the Proceedings of the Eighth International Grassland Congress held
            at the University of Reading, England, 11-21 July.
  
           Chung-Davidson, Y.W., Huertas, M. & Li, W. 2010. A review of
            research in fish pheromones. In Chemical Communication in Crustaceans, edited
            by Breithaupt, T. & Thiel, M. New York: Springer. pp. 467-482.
  
           Feldhendler, D. 2002. Augusto Boal and Jacob L.Moreno: Theatre and
            therapy. In Playing Boal: Theatre, Theraphy & Activitism, edited by
            Schutzman, M. & Cohen-Cruz, J. London: Routledge. pp. 97-119.
  
           Felgner, P., Barenholz, Y., Behr, J., Cheng, S., Cullis, P.,
            Huang, L., Jessee, J.A., Seymour, L., Szoka, F., Thierry, A.R., Wagner, E.
  & Thierry, A. 1997. Nomenclature for synthetic gene delivery systems. Human
    Gene Therapy 8(5): 511-512.
  
           Forbes, J., Russell, J., Miyahara, S., Zhang, X., Palo, S.,
            Mlynczak, M., Mertens. C.J. & Hagan, M. 2006. Troposphere-thermosphere
            tidal coupling as measured by the SABER instrument on TIMED during
            July-September 2002. Journal of Geophysical Research: Space Physics 111(A10).
            https:// doi.org/10.1029/2005JA011492.
  
           Hardin, R. 2015. Collective Action. New York: RFF Press.
            
           Kiyoi, H., Naoe, T., Nakano, Y., Yokota, S., Minami, S., Miyawaki,
            S., Asou, N., Kuriyama, K., Jinnai, I., Shimazaki, C., Akiyama, H., Saito, K.,
            Oh, H., Motoji, T., Omoto, E., Saito, H., Ohno, R. & Ueda, R. 1999.
            Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid
            leukemia. Blood 93(9): 3074-3080.
  
           Kreider, J.C. & Blumberg, M.S. 2005. Geotaxis and beyond:
            Commentary on Motz and Alberts. Neurotoxicology and Teratology 27(4):
            535-538.
  
           Leonova, A., Pokorny, J. & Smith, V.C. 2003. Spatial frequency
            processing in inferred PC-and MC-pathways. Vision Research 43(20):
            2133-2139.
  
           Meyers, M.A. & Chawla, K.K. 1999. Mechanical Behavior of
            Materials. Englewood Cliffs: Prentice-Hall.
  
           Morehouse, B.J., Carter, R.H. & Sprouse, T.W. 2000. The
            implications of sustained drought for transboundary water management in
            Nogales, Arizona, and Nogales, Sonora. Natural Resources Journal 40(4):
            783-817.
  
           Nogales,
            E., Whittaker, M., Milligan, R.A. & Downing, K.H. 1999. High-resolution
            model of the microtubule. Cell 96(1): 79-88. 
  
 Pet-Soede,
            C., Cesar, H.S. & Pet, J. 1999. An economic analysis of blast fishing on
            Indonesian coral reefs. Environmental Conservation 26(2): 83-93.
  
           Schoutens,
            W. 2005. Moment swaps. Quantitative Finance 5(6): 525-530.
  
           Shah,
            S., Li, J., Moffatt, B.A. & Glick, B.R. 1998. Isolation and
            characterization of ACC deaminase genes from two different plant growth-promoting
            rhizobacteria. Canadian Journal of Microbiology 44(9): 833-843.
  
           Sharma,
            P., Khatri, V.K., Gu, X., Song, Y., Shen, M.L., Riggs- Sauthier, J., Anand,
            N.K., Kozlowski, A., Odinecs, A. & Riley, T.A. 2019. Derivatives of 6-(2,
            3-dichlorophenyl)-1, 2, 4-triazin-5-amine: Google Patents.
  
           Shen,
            R. & Andrews, S.A. 2011. NDMA formation kinetics from three pharmaceuticals
            in four water matrices. Water Research 45(17): 5687-5694.
  
           Sirenko,
            Y.M., Stroscio, M.A. & Kim, K. 1996. Elastic vibrations of microtubules in
            a fluid. Physical Review E 53(1): 1003.
  
           Taj,
            M. & Zhang, J. 2014. Analysis of wave propagation in orthotropic
            microtubules embedded within elastic medium by Pasternak model. J. Mech.
              Behav. Biomed. Mater. 30: 300-305.
  
           Taj,
            M. & Zhang, J. 2012. Analysis of vibrational behaviors of microtubules
            embedded within elastic medium by Pasternak model. Biochemical and
              Biophysical Research Communications 424(1): 89-93.
  
           Taj,
            M. & Zhang, J.Q. 2011. Buckling of embedded microtubules in elastic medium. Applied Mathematics and Mechanics 32(3): 293-300.
  
           Van
            Buren, M.E. & Erskine, W. 2002. The 2002 ASTD state of the industry report. Alexandria, VA: American Society of Training and Development.
  
           Van
            Buren, V., Odde, D.J. & Cassimeris, L. 2002. Estimates of lateral and longitudinal
            bond energies within the microtubule lattice. Proceedings of the National
              Academy of Sciences 99(9): 6035-6040.
  
           Wang,
            Y., Kong, L.J., Li, C. & Bureau, D.P. 2006. Effect of replacing fish meal
            with soybean meal on growth, feed utilization and carcass composition of
            cuneate drum (Nibea miichthioides). Aquaculture 261(4):
            1307-1313.
  
           Yang,
            X., Schadt, E.E., Wang, S., Wang, H., Arnold, A.P., Ingram- Drake, L., Drake,
            T.A. & Lusis, A.J. 2006. Tissue-specific expression and regulation of
            sexually dimorphic genes in mice. Genome Research 16(8): 995-1004.
  
           Zhang,
            B., Georgiev, O., Hagmann, M., Günes, Ç., Cramer, M., Faller, P., Vasák, M.
  & Schaffner, W. 2003. Activity of metal-responsive transcription factor 1
            by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Molecular and Cellular Biology 23(23): 8471-8485.
  
           Zhao,
            Z., Dua, D. & Singh, S. 2017. Generating natural adversarial examples. arXiv
              preprint arXiv:1710.11342.
  
           Zheng,
            J., Trafny, E.A., Knighton, D.R., Xuong, N.H., Taylor, S.S., Ten Eyck, L.F.
  & Sowadski, J.M. 1993. 2.2 Å refined crystal structure of the catalytic
            subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide
            inhibitor. Acta Crystallographica Section D: Biological Crystallography 49(3):
            362-365.
  
           Zhou,
            Y., Wu, Y., Yang, L., Fu, L., He, K., Wang, S., Hao J., Chen, J. & Li, C.
            2010. The impact of transportation control measures on emission reductions
            during the 2008 Olympic Games in Beijing, China. Atmospheric Environment 44(3):
            285-293.
  
           
             
           *Pengarang untuk surat-menyurat;
            email: Muhammad_taj75@yahoo.com  
           
                     |