Sains Malaysiana 48(3)(2019): 599–605
            
          
              http://dx.doi.org/10.17576/jsm-2019-4803-12 
                 
          
             
          
          Coconut
            Oil Based Microemulsion Formulations for Hair Care Product Application
            
          
              (Mikroemulsi 
                Berasaskan Minyak Kelapa untuk Kegunaan Produk Penjagaan Rambut) 
                 
              SAFIAH MOHAMAD JA'AFAR, 
                ROZIDA 
                MOHD. 
                KHALID, 
                RIZAFIZAH 
                OTHAMAN, 
                WAN 
                NUR 
                AINI 
                WAN 
                MOKHTAR 
                & SURIA RAMLI*  
          
             
          
              Centre 
                for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 
                46300 UKM Bangi, Selangor Darul Ehsan, Malaysia  
          
             
          
          Diserahkan: 15 September 2018/Diterima: 28 November 2018
            
          
          
             
          
          ABSTRACT
            
          
          Coconut oil in microemulsion is a better option than conventional
            practice since it can incorporate bioactive ingredients with a stable control
            release property, especially for hair care products. This work aims to develop
            microemulsion systems based on coconut oil with the addition of Tween 20, Tween
            40, and Tween 80 as non-ionic surfactants (S), and propylene glycol as a
            co-surfactant (CoS). The determination of microemulsion regions in the ternary
            phase diagram was carried out by water titration method and the properties of
            the microemulsion were analysed. Based on the results, the microemulsion system
            of coconut oil with Tween 80 produced the largest microemulsion region compared
            to Tween 40 and Tween 20. Microemulsion systems of coconut oil/Tween 80 with
            the addition of propylene glycol with the ratio of S/CoS at Km = 3:1, 2:1, and
            1:1 resulted in a decrement of microemulsion regions compared to using merely
            Tween 80. The microemulsion system of coconut oil/Tween 80/water at the ratio
            of oil: surfactant = 1:9 was chosen for further characterisations. Viscosity
            and electrical conductivity studies showed that the microemulsion system was
            water-in-oil (w/o) type as there was no phase transition to bicontinuous (BC)
            or oil-in-water (o/w) type due to low percentage of water content. Stability
            studies showed that the microemulsion system remained clear and stable at 25
            and 40°C upon one-month storage except at 4°C where the system became cloudy
            and turbid. For particle size analysis, the microemulsion system possessed
            particle size less than 100 nm.
  
          
          
             
          
          Keywords: Coconut oil; microemulsion; ternary phase diagram; Tween
            surfactants
            
          
          
             
          
          ABSTRAK
            
          
          Minyak kelapa sebagai mikroemulsi adalah lebih baik daripada
            penggunaannya secara konvensional kerana ia dapat menambah bahan bioaktif untuk
            dilepaskan dalam keadaan terkawal dan stabil untuk kegunaan produk penjagaan
            rambut. Tujuan kajian ini dijalankan adalah untuk menghasilkan sistem
            mikroemulsi berasaskan minyak kelapa dengan surfaktan jenis Tween 20, Tween 40
            dan Tween 80 sebagai surfaktan bukan ionik (S) dan penambahan propilena glikol
            sebagai ko-surfaktan (CoS). Rantau pembentukan mikroemulsi pada rajah fasa
            ternari ditentukan dengan menggunakan kaedah penitratan air dan sifat
            mikroemulsi tersebut dianalisis. Keputusan menunjukkan sistem mikroemulsi minyak
            kelapa dengan Tween 80 menghasilkan rantau mikroemulsi paling luas berbanding
            Tween 40 dan Tween 20. Sistem mikroemulsi minyak kelapa/Tween 80 dengan
            penambahan propilena glikol dengan nisbah S/KoS pada Km=3:1, 2:1 dan 1:1
            menunjukkan pengurangan rantau mikroemulsi berbanding menggunakan Tween 80
            secara tunggal. Sistem mikroemulsi minyak kelapa/Tween 80/air pada nisbah
            minyak:surfaktan=1:9 dipilih bagi pencirian
            selanjutnya. Ujian konduktiviti elektrik dan kelikatan menunjukkan jenis sistem
            mikroemulsi air-dalam-minyak (w/o) dan tiada fasa transisi kepada sistem
            dwiselanjar (BC) disebabkan kandungan peratusan air yang rendah. Ujian
            kestabilan menunjukkan sistem mikroemulsi kekal jernih dan stabil pada suhu
            penyimpanan 25ºC dan 40ºC selama sebulan kecuali pada suhu 4°C kerana sistem
            menjadi kabur dan keruh. Bagi analisis saiz zarah, sistem mikroemulsi mempunyai
            saiz zarah kurang daripada 100 nm.
  
          
          
             
          
          Kata kunci: Mikroemulsi; minyak kelapa; rajah
            fasa ternary; surfaktan Tween
            
          
          RUJUKAN
            
          
          Akter, N., Radiman, S., Mohamed, F. & Ramly, N.B. 2014.
            Investigation of the gelation mechanism between amino acid surfactant based
            microemulsion and kappa-carrageenan gel network. Sains Malaysiana 43(2):
            203-209.
  
          
          Azeem, A., Rizwan, M., Ahmad, F.J., Khan, Z.I., Khar, R.K.,
            Aqil, M. & Talegaonkar, S. 2008. Emerging role of microemulsions in
            cosmetics. Recent Patents on Drug Delivery & Formulation 2(3):
            275-289.
  
          
          Basheer, H.S., Noordin, M.I. & Ghareeb, M.M. 2013.
            Characterization of microemulsions prepared using isopropyl palmitate with
            various surfactants and co-surfactants. Tropical Journal of Pharmaceutical
              Research 12(3): 305-310.
  
          
          Cho, Y.H., Kim, S., Bae, E.K., Mok, C.K. & Park, J.
            2008. Formulation of a cosurfactant-free O/W microemulsion using nonionic
            surfactant mixtures. Journal of Food Science 73(3): E115-E121.
  
          
          Constantinides, P.P. & Scalart, J.P. 1997. Formulation
            and physical characterization of water-in- oil microemulsions containing long-
            versus medium-chain glycerides. International Journal of Pharmaceutics 158(1):
            57-68.
  
          
          Garti, N., Avrahami, M. & Aserin, A. 2006. Improved
            solubilization of celecoxib in U-type nonionic microemulsions and their
            structural transitions with progressive aqueous dilution. Journal of Colloid
              and Interface Science 299(1): 352-365.
  
          
          Gavazzoni Dias, M.F.R. 2015. Hair cosmetics: An overview. Int.
            J. Trichology 7(1): 2-15.
  
          
          Grimwood, B.E., Ashman, F., Dendy, D.A.V., Jarman, C.G.,
            Little, E.C.S. & Timmins, W.H. 1975. Coconut palm products - Their
            processing in developing countries. Rome: FAO. ISBN 978-92-5-100853-9. p. 193.
  
          
          Joshi, S.S. & Bhagwat, S.S. 2013. Physicochemical
            behaviour of ternary system based on coconut oil/C2E8/n-pentanol/water. Journal of Surface Science and Technology 29(1-2): 1-13.
  
          
          Ke, W.T., Lin, S.Y., Ho, H.O. & Sheu, M.T. 2005.
            Physical characterizations of microemulsion systems using tocopheryl
            polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery
            of protein drugs. Journal of Controlled Release 102(2): 489-507.
  
          
          Kogan, A., Aserin, A. & Garti, N. 2007. Improved
            solubilization of carbamazepine and structural transitions in nonionic
            microemulsions upon aqueous phase dilution. Journal of Colloid and Interface
              Science 315(2): 637-647.
  
          
          Lawrence, M.J. & Rees, G.D. 2012. Microemulsion-based
            media as novel drug delivery systems. Advanced Drug Delivery Reviews 64(0):
            175-193.
  
          
          Lv, F.F., Li, N., Zheng, L.Q. & Tung, C.H. 2006. Studies
            on the stability of the chloramphenicol in the microemulsion free of alcohols. European
              Journal of Pharmaceutics and Biopharmaceutics 62(3): 288-294.
  
          
          Marina, A.M., Che Mana, Y.B. & Amin, I. 2009. Virgin
            coconut oil: Emerging functional food oil. Trends in Food Science &
              Technology 20: 481-487.
  
          
          Mahdi, E.S., Sakeena, M.H.F., Abdulkarim, M.F., Abdullah,
            G.Z., Sattar, M.A. & Noor, A.M. 2011. Effect of surfactant and surfactant
            blends on pseudoternary phase diagram behavior of newly synthesized palm kernel
            oil esters. Drug Design, Development and Therapy 5: 311-323.
  
          
          Man, Y.B.C. & Manaf, M.A. 2006. Medium-chain
            triacylglycerols. Dlm Nutraceutical and Specialty Lipids and Their Co-
              Products. Boca Raton: CRC Press. p. 27.
  
          
          Mehta, S.K., Dewan, R.K. & Bala, K. 1994. Percolation
            phenomenon and the study of conductivity, viscosity, and ultrasonic velocity in
            microemulsions. Physical Review E 50(6): 4759-4762.
  
          
          Mohd Nadzir, M., Fen, T.W., Mohamed, A.R. & Hisham, S.F.
            2017. Size and stability of curcumin niosome from combinations of tween 80 and
            span 80. Sains Malaysiana 46(12): 2455-2460.
  
          
          Norhayati, Y., Afzan, A., Jannah, S. & Nurul, W. 2016.
            Antioxidative responses of Cocos nucifera against infestation by the Red
            Palm Weevil (RPW), Rhynchophorus ferrugineus, a new invasive coconut
            pest in Malaysia. Sains Malaysiana 45(7): 1035-1040.
  
          
          Paul, B.K. & Moulik, S.P. 2001. Uses and applications of
            microemulsions. Current Science 80(8): 990-1001.
  
          
          Podlogar, F., Gašperlin, M., Tomšič, M.,
            Jamnik, A. & Rogač, M.B. 2004. Structural
              characterisation of water-Tween 40®/ Imwitor 308®–isopropyl myristate
              microemulsions using different experimental methods. International
                Journal of Pharmaceutics 276(1-2): 115-128.
  
          
          Ramli, S. 2013. Surfactant protein B-based microemulsion as
            transdermal drug carrier for anti-acne agent. PhD Thesis. The University of
            Queensland Australia (Unpublished).
            
          
          Ramli, S., Norhman, N., Zainuddin, N., Mohd Ja’afar, S.
  & Abdul Rahman, I. 2017. Nanoemulsion based palm olein as vitamin E
            carrier. Malaysian Journal of Analytical Sciences 21(6): 1399-1408.
  
          
          Ramli, S., Mohd Ja’afar, S., Abdul Sisak, M.A., Zainuddin,
            N. & Abdul Rahman, I. 2015. Formulation and physical characterization of
            microemulsion based carboxymethyl cellulose as vitamin C carrier. Malaysian
              Journal of Analytical Sciences 19(1): 275-283.
  
          
          Ramli,
            S., Ross, B.P. & Gentle, I.R. 2009. Formulation and physical
            characterization of microemulsions containing isotritenoin. International
              Conference on Biomedical and Pharmaceutical Engineering. pp. 1-7.
  
          
          Rukmini, A., Raharjo,
            S. & Supriyadi, S. 2012. Formulation and stability of water-in-virgin
            coconut oil microemulsion using ternary food grade nonionic surfactants. International
              Food Research Journal 19(1): 259-264.
  
          
          Sanjeewani, N.A. & Sakeena, M.H.F. 2013. Formulation and
            characterization of virgin coconut oil (VCO) based emulsion. International
              Journal of Scientific and Research Publications 3(12): 1-6.
  
          
          Spernath, A. & Aserin, A. 2006. Microemulsions as
            carriers for drugs and nutraceuticals. Advances in Colloid and Interface
              Science 128-130: 47-64.
  
          
          Syed, H.K. & Peh, K.K. 2014. Identification of phases of
            various oil, surfactant/co-surfactants and water system by ternary phase
            diagram. Acta Poloniae Pharmaceutica-Drug Research 71(2): 301-309.
  
          
              Talbot, G. 2016. 
                The stability and shelf life of fats and oils. In The Stability 
                and Shelf Life of Food. 2nd ed., Persis Subramaniam 
                & P. Wareing (Eds.). Cambridge: 
                Woodhead Publishing. pp. 461-503. 
          Talegaonkar, S., Azeem, A., Ahmad, F.J., Khar, R.K., Pathan,
            S.A. & Khan, Z.I. 2008. Microemulsions: A novel approach to enhanced drug
            delivery. Recent Patents on Drug Delivery & Formulation 2(3):
            238-257.
  
          
          Tubtimsri, S., Limmatvapirat, C., Sriamornsak, P. &
            Limmatvapirat, S. 2014. Determination of required hydrophile-lipophile balance
            value of modified coconut oil. Advanced Materials Research 1060:
            172-175.
  
          
          Villarino, B.J., Dy, L.M. & Lizada, C.C. 2007.
            Descriptive sensory evaluation of virgin coconut oil and refined, bleached and
            deodorized coconut oil. LWT 40: 193-199.
  
          
          Warisnoicharoen, W., Lansley, A.B. & Lawrence, M.J.
            2000. Nonionic oil-in-water microemulsions: The effect of oil type on phase
            behaviour. International Journal of Pharmaceutics 198(1): 7-27.
  
          
          Zainuddin, N., Ahmad, I., Abdul Rahman, I. & Ramli, S.
            2017. Kesan penambahan limonene terhadap mikroemulsi asid oleic/Cremophor Rh
            40/Transcutol/Air. Sains Malaysiana 46(10): 1797-1805.
  
          
          
             
          
          *Pengarang
            untuk surat-menyurat; email: su_ramli@ukm.edu.my