Sains Malaysiana 48(4)(2019): 735–744
            
          
              http://dx.doi.org/10.17576/jsm-2019-4804-05    
          
             
          
          Nutrient Mineralization and Soil Biology
            as Influenced by Temperature and Fertilizer Management Practices
            
          
              (Pemineralan Nutrien dan Biologi Tanih yang Dipengaruhi 
                oleh Suhu dan Amalam Pengurusan Baja)  
          
             
          
          UMME AMINUN NAHER1*, IMRAN ULLAH SARKER1, AFSANA JAHAN1, MD. MANIRUZZAMAN2, APURBA KANTI CHOUDHURY3, NAVIN KALRA4 & JATISH CHANDRA BISWAS1
            
          
          
             
          
          1Soil Science Division,
            Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
            
          
          
             
          
          2Irrigation and Water
            Management Division, Bangladesh Rice Research Institute, Gazipur-1701
            
          
          Bangladesh
            
          
          
             
          
          3On Farm Research
            Division, Bangladesh Agricultural Research Division, Gazipur-1701, Bangladesh
            
          
          
             
          
          4Krishi Gobeshona
            Foundation, Farmgate, Dhaka-1215, Bangladesh
            
          
          
             
          
          Diserahkan:
            11 Julai 2017/Diterima: 5 Februari 2019
            
          
          
             
          
          ABSTRACT
            
          
          High soil temperature due to climate
            change may influence nutrient mineralization and soil biology. An incubation
            study was conducted at Bangladesh Rice Research Institute to determine the
            effect of temperature (28°C and 45°C) on nutrient mineralization and soil
            microbial population of two different soils (terrace and saline soil) having
            different nutrient management practices (chemical fertilizer and integrated
            nutrient management). Terrace soil was clay loam and saline (6 ds m-1)
            soil was sandy loam in texture. Total N and organic C content was significantly
            high in terrace soil compared to saline soil. High temperature (45°C) enhanced
            C mineralization by 33% in integrated nutrient management (INM)
            of terrace soil and 41% in chemical fertilizer treatment in saline soil. The NH4+-N
            mineralization was increased by 3 fold in saline soil at 45°C as compared to
            the same at normal temperature of 28°C. Temperature and nutrient management
            options also significantly influenced phosphorus (P) and potassium (K)
            mineralization. High temperature significantly enhanced P mineralization in INM compared
            to chemical fertilizer amendment. In terrace soil, at 28°C temperature K
            mineralization was high in chemical fertilizer amended soil as compared to INM treatment.
            Temperature and nutrient sources affected soil bacterial population
            significantly compared to fungi, and actinomycetes. Phosphate solubilizing
            bacteria (PSB) were more resistant to high temperature compared to
            free-living N2 fixing bacteria. In general, high temperature and
            nutrient management practices affected C, N, P, K mineralization and soil
            biology; although mode of action varied and depending on soil types and
            nutrient management practices.
  
          
          
             
          
          Keywords: Climate change; integrated
            nutrient management; soil microorganisms; soil nutrient mineralization
            
          
          
             
          
          ABSTRAK
            
          
              Suhu tanih yang tinggi disebabkan 
                oleh perubahan iklim boleh mempengaruhi biologi pemineralan dan 
                nutrien tanih. Kajian inkubator yang telah dijalankan di Institut 
                Penyelidikan Beras Bangladesh untuk menentukan kesan suhu (28°C 
                dan 45°C) terhadap nutrien pemineralan dan populasi mikrob 
                tanih bagi dua tanih berbeza (tanih teres dan salin) yang mempunyai 
                nutrien yang berbeza amalan pengurusan (baja kimia dan pengurusan 
                nutrien bersepadu). Tanih teres lom liat dan tanih (6 ds m-1) 
                salin adalah lom tekstur berpasir. Jumlah N dan kandungan C organik 
                adalah tinggi dalam tanih teres berbanding tanih salin. Suhu yang 
                tinggi (45°C) mempertingkatkan pemineralan C sebanyak 33% 
                dalam pengurusan nutrien bersepadu (INM) bagi tanih teres dan 
                41% dalam baja kimia rawatan bagi tanih salin. Pemineralan bagi 
                NH4+-N meningkat 3 kali lipatan dalam tanih salin pada suhu 45°C 
                berbanding pada suhu biasa iaitu 28°C. Suhu dan pengurusan 
                nutrien juga mempengaruhi pemineralan fosforus (P) dan kalium 
                (K). Suhu tinggi meningkatkan pemineralan P dalam INM berbanding 
                baja kimia pindaan. Dalam tanih teres, pada suhu 28°C, pemineralan 
                K adalah tinggi dalam tanih baja kimia yang dipinda berbanding 
                rawatan INM. Suhu dan sumber nutrien mempengaruhi populasi bakteria 
                tanih secara signifikan berbanding kulat dan aktinomiset. Bakteria 
                pemelarutan fosfat (PSB) berdaya tahan terhadap suhu tinggi berbanding 
                bakteria hidup bebas N2. Secara amnya, suhu yang tinggi dan amalan 
                pengurusan nutrien mempengaruhi pemineralan C, N, P, K dan biologi 
                tanih; namun mod tindakan yang berubah dan bergantung kepada jenis 
                tanih dan amalan pengurusan nutrien.
              Kata kunci: Mikroorganisma tanih; 
                nutrien pemineralan tanih; pengurusan nutrien bersepadu; perubahan 
                iklim 
              RUJUKAN
            
          
          Allison, I., Bindoff,
            N., Bindschadler, R., Cox, P., de Noblet- Ducoudre, N., England, M., Francis,
            J., Gruber, N., Haywood, A., Karoly, D., Kaser, G., Le Quéré, C., Lenton, T.,
            Mann, M., McNeil, B., Pitman, A., Rahmstorf, S., Rignot, E., Schellnhuber, H.J.,
            Schneider, S., Sherwood, S., Somerville, R., Steffen, K., Steig, E., Visbeck,
            M. & Weaver, A. 2009. The Copenhagen Diagnosis 2009: Updating the World
              on the Latest Climate Science. Sydney, Australia: The University of New
            South Wales Climate Change Research Centre (CCRC).
  
          
          Bárcenas-Moreno, G.,
            Gómez-Brandón, M., Rousk, J. & Bååth, E. 2009. Adaptation of soil microbial
            communities to temperature: Comparison of fungi and bacteria in a laboratory
            experiment. Global Change Biol. 15: 2950-2957.
  
          
          Bekku, Y.S., Nakatsubo,
            T., Kume, A. & Koizumi, H. 2004. Soil microbial biomass, respiration rate,
            and temperature dependence on a successional glacier foreland in Nylesund,
            Svalbard. Arct. Antarct. Alp. Res. 36(4): 395-399.
  
          
          Benitez, C., Tejada, M.
  & Gonzalez, J. 2003. Kinetics of the mineralization of nitrogen in a pig
            slurry compost applied to soils. Compost Sci. Util. 11: 72-80.
  
          
          Benton, J.J. 2001. Laboratory
            Guide for Conducting Soil Tests and Plant Analysis. New York: CRC Press
            LLC. pp. 27-41.
  
          
          Biederbeck, V.O. & Campbell,
            C.A. 1973. Soil microbial activity as influenced by temperature trends and
            fluctuations. Can. J. Soil Sci. 53: 363-376.
  
          
          Birgander, J., Reischke,
            S., Jones, D.L. & Rousk, J. 2013. Temperature adaptation of bacterial
            growth and 14C-glucose mineralisation in a laboratory study. Soil Biol.
              Biochem. 65: 294-303.
  
          
          Biswas, J.C., Ladha,
            J.K. & Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient uptake and
            growth of lowland rice. Soil Sci. Soc. Am. J. 64(5): 1644-1650.
  
          
          Bustamante, M.A.,
            Paredes, C., Marhuenda-Egea, F.C., Pérez- Espinosa, A., Bernal, M.P. &
            Moral, R. 2008. Cocomposting distillery wastes with animal manure: Carbon and
            nitrogen transformations and evaluation of compost stability. Chemosphere 72:
            551-557.
  
          
          Bremner, J.M. &
            Mulvaney, C.S. 1982. Total nitrogen. In Methods of Soil Analysis, edited
            by Page, A.L., Miller, R.H. & Keeny, D.R. Madison: American Society of
            Agronomy and Soil Science Society of America. pp. 1119-1123.
  
          
          Classen, A.T.,
            Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A.,
            Moorheadand, L.C. & Patterson, C.M. 2015. Direct and indirect effects of
            climate change on soil microbial and soil microbial-plant interactions: What
            lies ahead? Ecosphere 6(8): 1-21.
  
          
          Coˆte´, L., Brown, S.,
            Pare´, D., Fyles, J. & Bauhus, J. 2000. Dynamics of carbon and nitrogen
            mineralization in relation to stand type, stand age and soil texture in the
            boreal mixed wood. Soil Biol. Biochem. 32: 1079-1090.
  
          
          Craine, J.M. &
            Gelderman, T.M. 2010. Soil moisture controls on temperature sensitivity of soil
            organic carbon decomposition for a mesic grassland. Soil Biol. Biochem. 43:
            455-457.
  
          
          Deressa, A. 2015.
            Effects of soil moisture and temperature on carbon and nitrogen mineralization
            in grassland soils fertilized with improved cattle slurry manure with and
            without manure additive. J. Environ. Hum. 2(1): 2373-8324.
  
          
          Grierson, P.F.,
            Comerford, N.B. & Jokela, E.J. 1998. Phosphorus mineralization kinetics and
            response of microbial phosphorus to wetting and drying in a Florida Spodosol. Soil
              Biol. Biochem. 30: 1323-1331.
  
          
          https://earthobservatory.nasa.gov/Features/GlobalWarming/
            page2.php. Accessed on June 26, 2017.
            
          
          Islam, T. & Neelim,
            A. 2010. Climate Change in Bangladesh: A Closer Look into Temperature and
              Rainfall Data. Dhaka: The University Press Limited.
  
          
          Joergensen, R.G.,
            Brookes, P.C. & Jenkinson, D.S. 1990. Survival of the soil microbial
            biomass at elevated temperatures. Soil Biol. Biochem. 22: 1129-1136.
  
          
          Lange, O.L. & Green,
            T.G.A. 2005. Lichens show that fungi can acclimate their respiration to
            seasonal changes in temperature. Oecol. 142: 11-19.
  
          
          Mahmud, K., Nasiruddin,
            K.M. & Hassan, L. 2016. Regeneration of sugarcane variety ISD 40 against
            salt stress condition. Sci. Tech. 2(8): 485-491.
  
          
          Murphy, J. & Riley,
            J.P. 1962. A modified single solution method for the determination of phosphate
            in natural waters. Anal. Chim. Acta 27: 31-36.
  
          
          McKinley, V.L. &
            Vestal, J.R. 1984. Biokinetic analyses of adaptation and succession: Microbial
            activity in composting municipal sewage sludge. Appl. Environ. Microbiol. 47:
            933-941.
  
          
          Mengel, K. 1982.
            Dynamics and availability of major nutrients in soils. Adv. Soil Sci. 2:
            65-131.
  
          
          Mohammad, A. 2015.
            Assessing changes in soil microbial population with some soil physical and
            chemical properties. Int. J. Plant Animal Environ. Sci. 5(3): 2231-4490.
  
          
          Naher, U.A., Othman, R.
  & Panhwar, Q.A. 2013. Culturable total and beneficial microbial occurrences
            in long-term nutrient deficit wetland rice soil. Aust. J. Crop Sci. 7(12):
            1848-1853.
  
          
          Panhwar, Q.A., Naher,
            U.A., Jusop, S., Othman, R., Latif, M.D.A. & Ismail, M.R. 2014. Biochemical
            and molecular characterization of potential phosphate-solubilizing bacteria in
            acid sulfate soils and their beneficial effects on rice growth. PLoS One 9(10):
            e97241.
  
          
          Prasad, G., James, E.K.,
            Mathan, N., Reddy, P.M., Reinhold- Hurek, B. & Ladha, J.K. 2001. Endophytic
            colonization of rice by a diazotrophic strain of Serratia marcescens. J.
              Bacteriol. 183: 2634-2645.
  
          
          Ranneklev, S. &
            Baath, E. 2001. Temperature-driven adaptation of the bacterial community in
            peat measured by using thymidine and leucine incorporation. Appl. Environ.
              Microbiol. 67: 1116-1122.
  
          
          Reitz, D. & Haynes,
            R. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial
            activity. Soil Biol. Biochem. 35: 845-854.
  
          
          Richardson, C.J. &
            Marshall, P.E. 1986. Processes controlling movement, storage, and export of
            phosphorus in a fen peatland. Ecol. Monogr. 56: 279-302.
  
          
          Rinnan, R., Rousk, J.,
            Yergeau, E., Kowalchuk, G.A. & Baath, E. 2009. Temperature adaptation of
            soil bacterial communities along an Antarctic climate gradient: Predicting
            responses to climate warming. Global Change Biol. 15: 2615-2625.
  
          
          Rousk, J., Frey, S.D.
  & Baath, E. 2012. Temperature adaptation of bacterial communities in
            experimentally warmed forest soils. Global Change Biol. 18: 3252-3258.
  
          
          Scheffer, F. &
            Schachtschabel, P. 1989. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart,
            Germany. p. 491.
            
          
          Setia, R., Marschner,
            P., Baldock, J., Chittleborough, D., Smith, P. & Smith, J. 2011. Salinity
            effects on carbon mineralization in soils of varying texture. Soil Biol.
              Biochem. 43(9): 1908-1916.
  
          
          Siqueira Neto, M., Scopel, E., Corbeels,
            M., Nunes Cardoso, A., Douzet, J.M., Feller, C., Piccolo, M.C., Cerri, C.C.
  & Bernoux, M. 2010. Soil carbon stocks under no-tillage mulch-based
            cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil
              Tillage Res. 110: 187-195.
  
          
          Suter, H.C., Pengthamkeerati, P., Walker,
            C. & Chen, D. 2011. Influence of temperature and soil type on inhibition of
            urea hydrolysis by N-(nbutyl) thiophosphoric triamide in wheat and pasture
            soils in South Eastern Australia. Soil Res. 49: 315-319.
  
          
          Thangarajan, R., Bolan, N.S., Naidu, R.
  & Surapaneni, A. 2015. Effects of temperature and amendments on nitrogen
            mineralization in selected Australian soils. Environ. Sci. Pollut. Res. Int. 22(12): 8843-8854.
  
          
          Thompson, L.M. & Black, C.A. 1947.
            The effect of temperature on the mineralization of soil organic phosphorus. Soil
              Sci. Soc. Amer. Proc. 12: 323-326.
  
          
          Tibbles, B.J. & Harris, J.M. 1996.
            Use of radio labelled thymidine and leucine to estimate bacterial production in
            soils from the continental Antarctica. Appl. Environ. Microbiol. 62:
            694-701.
  
          
          van Gestel, N.C., Dhungana, N., Tissue,
            D.T. & Zak, J.C. 2016. Seasonal microbial and nutrient responses during a
            5-year reduction in the daily temperature range of soil in a Chihuahuan Desert
            ecosystem. Oecologia 180(1): 265-277.
  
          
          Walkley, A.C. & Black, T.A. 1935.
            Estimation of soil organic carbon by chromic acid titration method. Soil
              Sci. 47: 29-38.
  
          
          Walpola, B. & Arunakumara, K. 2010.
            Effect of salt stress on decomposition of organic matter and nitrogen
            mineralization in animal manure amended soils. J. Agr. Sci. 5: 9-18.
  
          
          Whalen, J.K., Chang, C. & Olson, B.M.
            2001. Nitrogen and phosphorus mineralization potentials of soils receiving
            repeated annual cattle manure applications. Biol. Fertil. Soils 34:
            334-341.
  
          
          Xe, R., Tong, C.L., Sun, Z.L., Tang,
            G.Y., Xiao, H.A. & Wu, J.S. 2007. Effects of temperature on organic carbon
            mineralization in paddy soils with different clay content. The Journal of
              Applied Ecology 18(10): 2245-2250.
  
          
          Xu, X., Niu, S., Sherry, R.A., Zhou, X.,
            Zhou, J.Y. & Luo, Y. 2012. Inter annual variability in responses of
            belowground net primary productivity (NPP) and NPP partitioning to long-term
            warming and clipping in a tallgrass prairie. Global Change Biol. 18:
            1648-1656.
  
          
          Yuan, B.C., Li, Z.Z., Liu, H., Gao, M.
  & Zhang, Y.Y. 2007. Microbial biomass and activity in salt affected soils
            under arid conditions. Appl. Soil Ecol. 35: 319-328.
  
          
          
             
          
          *Pengarang untuk
            surat-menyurat; email: naher39@gmail.com