Sains Malaysiana 48(6)(2019): 1163–1169
http://dx.doi.org/10.17576/jsm-2019-4806-02
Reflectance
Characteristics of Silicon Surface Fabricated with the Arrays of Uniform
Inverted Pyramid Microstructures in UV-Visible Range
(Ciri
Pantulan Permukaan
dalam Julat UV-Nampak
Bagi Silikon
yang Difabrikasi dengan Jajaran Seragam Mikrostruktur Piramid Sonsang)
MOHD FAIZOL ABDULLAH
& ABDUL MANAF HASHIM*
Malaysia-Japan
International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 16 Julai 2018/Diterima: 15 November 2018
ABSTRACT
In this paper, inverted
pyramidal microstructures are designed and fabricated on silicon (Si) surface.
The characteristics of surface reflectance are simulated using two-dimensional
(2D) finite-difference time-domain (FDTD) method by varying the
spacing (S) and width (W) of the pyramidal microstructures. The results showed
that the effect of S is more significant compared to W where the reflectance of
the irradiated light has been increased gradually with the increase of S from 0
to 3 μm, and the difference is around 9.6%. Due to the etching
constraint, S= 3 μm is chosen for the
fabrication. Textured structure is fabricated by the anisotropic etching of tetramethyl-ammonium hydroxide (TMAH)
with additional of isopropyl alcohol (IPA). Long etching time of 120
min is required to form uniform arrays of pyramidal microstructures with smooth
and well-terminated four sidewalls at (111) plane. Due to the undercut etching
under SiO2 mask, it results to the formation of slightly larger W
and smaller S in the fabricated structures. The measured average reflectance in UV-visible
range for the Si with inverted pyramidal microstructures is very low down to
10.4%. The discrepancy between the measured and simulated values is speculated
to be due to the use of 2D FDTD instead of three-dimensional (3D) FDTD.
Keywords: Anisotropic
etching; FDTD; reflectance; Si inverted pyramid; TMAH/IPA; UV-visible
ABSTRAK
Dalam kertas ini, mikrostruktur
piramid songsang Si bersaiz mikro telah direka bentuk dan difabrikasi
di atas permukaan silikon (Si). Ciri pantulan permukaan telah disimulasi
menggunakan kaedah domain-masa perbezaan-terhingga (FDTD)
dua-dimensi (2D) dengan membezakan jarak dan lebar mikrostruktur
piramid. Data menunjukkan kesan jarak (S) adalah lebih ketara jika
dibandingkan dengan kesan lebar (W) terhadap pantulan permukaan.
Pantulan cahaya yang disinarkan telah meningkat secara beransur-ansur
dengan peningkatan S daripada 0 kepada 3 μm dan perbezaan adalah sekitar 9.6%. Disebabkan kekangan
punaran, S= 3 μm telah dipilih untuk difabrikasi. Tekstur telah
difabrikasi dengan cara punaran anisotropik oleh tetra metil ammonium
hidroksida (TMAH) berserta campuran alkohol isopropil (IPA).
Punaran pada tempoh yang lama iaitu 120 min diperlukan untuk membentuk
jajaran mikrostruktur piramid yang seragam dengan empat sisi tepi
pada satah (111) yang licin berserta penamatan yang baik. Disebabkan
potongan bawah punaran di bawah topeng SiO2, ia membentuk W yang sedikit lebih
besar dan S yang lebih kecil bagi struktur yang telah difabrikasi.
Purata pantulan dalam julat UV-nampak yang telah diukur bagi Si dengan
mikrostruktur piramid songsang adalah sangat rendah iaitu 10.4%.
Percanggahan antara nilai yang diukur dengan nilai yang disimulasi
telah dispekulasi disebabkan penggunaan FDTD 2D dan bukannya FDTD
tiga-dimensi (3D).
Kata kunci: FDTD; pantulan; piramid songsang Si; punaran anisotropik; TMAH/IPA; UV-nampak
RUJUKAN
Abdullah, M.F. & Hashim, A.M. 2018.
Design of optimum rear passivated submicron Al corrugation in very thin
textured silicon back-contact back-junction solar cell for absorption
enhancement up to near-infrared region. J. Photon. Energy 8: 014501.
Abdullah, M.F., Alghoul, M.A., Naser, H., Asim, N., Ahmadi, S., Yatim, B. & Sopian, K. 2016.
Research and development efforts on texturization to
reduce the optical losses at front surface of silicon solar cell. Renew.
Sustainable Energy Rev. 66: 380-398.
Fan, Y., Han, P., Liang, P., Xing, Y., Ye, Z. & Hu, S. 2013.
Differences in etching characteristics of TMAH and KOH on preparing inverted
pyramids for silicon solar cells. Appl. Surf. Sci. 264: 761-766.
Green, M.A., Hishikawa, Y., Dunlop,
E.D., Levi, D.H., Hohl- Ebinger,
J. & Ho-Baillie, A.W.Y. 2018. Solar cell efficiency tables (version 52). Prog. Photovolt. Res.
Appl. 26: 427-436.
Green, M.A., Zhao, J., Wang, A. & Wenham, S.R. 2001. Progress
and outlook for high-efficiency crystalline silicon solar cells. Sol. Energ. Mat. Sol. Cells 65: 9-16.
Iencinella, D., Centurioni,
E., Rizzoli, R. & Zignani, F. 2004. An optimized
texturing process for silicon solar cell substrates using TMAH. Sol. Energ. Mat. Sol. Cells 87: 725-732.
Jamil, N.A., Susthitha Menon, P., Mei,
G.S. & Yeop Majlis, B.
2018. Peningkatan kepekaan biosensor urea berasaskan resonans plasmon permukaan dan tatasusunan Kretschmann dengan struktur hibrid grafin-mos2. Sains Malaysiana47(5):
1033-1038.
Kim, J., Inns, D., Fogel, K. & Sadana, D.K. 2010. Surface texturing of single-crystalline
silicon solar cells using low density SiO2 films as an anisotropic etch
mask. Sol. Energ. Mat. So. Cells 94:
2091-2093.
Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett,
C., Ruby, D., Winderbaum, S. & Leo, A. 2004.
Texturing industrial multi crystalline silicon solar cells. Sol. Energy 76:
277-283.
Ou, W., Zhang, Y., Li, H., Zhao,
L., Zhou, C., Diao, H., Liu, M., Lu, W., Zhang, J.
& Wang, W. 2011. Effects of IPA on texturing process for mono-crystalline
silicon solar cell in TMAH solution. Mater. Sci. Forum 685: 31-37.
Palik, E.D. 1998. Handbook of
Optical Constants of Solids. New York: Academic Press.
Papet, P., Nichiporuk,
O., Kaminski, A., Rozier, Y., Kraiem,
J., Lelievre, J.F., Chaumartin,
A., Fave, A. & Lemiti,
M. 2006. Pyramidal texturing of silicon solar cell with TMAH chemical
anisotropic etching. Sol. Energ. Mat. Sol. Cells 90:
2319-2328.
Park, H., Lee, J.S.,
Lim, H.J., Kim, D., Kwon, S. & Yoon, S. 2009. The effect of tertiary-butyl
alcohol on the texturing of crystalline silicon solar cells. J. Korean Phys.
Soc. 55: 1767-1771.
Saseendran, S.S. & Kottantharayil, A. 2015. Inverted pyramidal texturing of
silicon through blisters in silicon nitride. IEEE J. Photovolt.
5: 819-825.
Sepeai, S., Zulhafizhazuan, W., Leong, C.S., Ludin,
N.A., Ibrahim, M.A., Sopian, K. & Zaidi, S.H.
2017. Analisis arus-voltan bagi pengubahsuaian proses fabrikasi sel suria silikon jenis-p ke atas wafer silikon jenis-n. Sains Malaysiana46(10): 1943-1949.
Shuba, M.V., Faryad, M., Solano, M.E., Monk, P.B. & Lakhtakia, A. 2015. Adequacy of the rigorous coupled-wave
approach for thin-film silicon solar cells with periodically corrugated
metallic backreflectors: Spectral analysis. J.
Opt. Soc. Am. A 32: 1222-1230.
Singh, P.K., Kumar, R.,
Lal, M., Singh, S.N. & Das, B.K. 2001. Effectiveness of anisotropic etching
of silicon in aqueous alkaline solutions. Sol. Energ.
Mat. Sol. Cells 70: 103-113.
Solano, M., Faryad, M., Hall, A.S., Mallouk,
T.E., Monk, P.B. & Lakhtakia, A. 2013. Optimization
of the absorption efficiency of an amorphous silicon thin-film tandem solar
cell backed by a metallic surface-relief grating. Appl. Opt. 52:
966-979.
Vazsonyi, E., De Clercq, K., Einhaus, R., Van Kerschaver, E., Said, K., Poortmans,
J., Szlufcik, J. & Nijs,
J. 1999. Improved anisotropic etching process for industrial texturing of
silicon solar cells. Sol. Energ. Mat. Sol. Cells 57:
179-188.
Xi, Z., Yang, D., Dan,
W., Jun, C., Li, X. & Que, D. 2004. Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline. Renew. Energ. 29: 2101-2107.
Xu, H., Zhong, S., Zhuang, Y. & Shen, W. 2018. Controllable
nanoscale inverted pyramids for high-efficient quasi-omnidirectional
crystalline silicon solar cells. Nanotechnology 29: 015403.
Yang, L., Liu, Y., Wang,
Y., Chen, W., Chen, Q., Wu, J., Kuznetsov, A. &
Du, X. 2017. 18.87%-efficient inverted pyramid structured silicon solar cell by
one-step Cu-assisted texturization technique. Sol. Energ. Mat. Sol. Cells 166: 121-126.
You, J.S., Kim, D., Huh,
J.Y., Park, H.J., Pak, J.J. & Kang, C.S. 2001. Experiments on anisotropic
etching of Si in TMAH. Sol. Energ. Mat. Sol. Cells 66: 37-44.
Zubel, I. & Kramkowska, M. 2004. Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with
isopropanol solutions. Sens. Actuator A-Phys. 115: 549-556.
Zubel, I. & Kramkowska, M. 2001. The effect of isopropyl alcohol on
etching rate and roughness of (100) Si surface etched in KOH and TMAH
solutions. Sens. Actuators A-Phys. 93: 138-147.
Zubel, I., Rola, K. & Kramkowska, M.
2011. The effect of isopropyl alcohol concentration on the etching process of
Si-substrates in KOH solutions. Sens. Actuator A-Phys. 171: 436-445.
*Pengarang untuk surat-menyurat; email: abdmanaf@utm.my
|