Sains Malaysiana 48(6)(2019): 1281–1288
http://dx.doi.org/10.17576/jsm-2019-4806-16
Temperature and Power
Dependence of Photoluminescence in PbS Quantum Dots Nanoparticles
(Kesandaran Suhu dan Kuasa
Pengujaan terhadap Fotoluminesens Titik Kuantum PbS Berzarah Nano)
MUHAMMAD SAFWAN ZAINI1, MAZLIANA AHMAD KAMARUDIN1*, JOSEPHINE LIEW YING CHYI1, SHAHRUL AINLIAH ALANG AHMAD2 & ABDUL RAHMAN MOHMAD3
1Department of Physics, Faculty
of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Institute of Microengineering and Nanoelectronics,
Level 4, Research Complex, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 2 Januari 2019/Diterima: 28 Februari 2019
ABSTRACT
In this study, the
synthesis and the effect of temperature and power excitation towards
photoluminescence (PL) emission of colloidal PbS quantum dots (QDs) were reported. Water
soluble PbS QDs capped with a mixture of
1-thioglycerol (TGL) and dithioglycerol (DTG)
was synthesized via colloidal chemistry method at room temperature. The PL emission
of PbS QDs
was investigated under temperature range from 10 K to 300 K and we found that
the PL emission blue-shifted when the temperature is
increased. From high resolution transmission electron microscopy (HRTEM),
the average size of PbS core QDs
is determined to be 6 nm and the integrated PL intensity
(IPL)
versus excitation power density shows the recombination of electrons and holes
occur efficiently at low and high temperature for the PbS QDs.
Full width half maximum (FWHM) shows a gradual broadening with
the increasing temperature due to the interaction of charge carriers with
phonons.
Keywords: Near
infrared; PbS; photoluminescence; quantum dots
ABSTRAK
Dalam kajian ini,
sintesis dan kesan
terhadap suhu
dan kuasa pengujaan
fotoluminesens (PL)
ke atas koloid
PbS titik
kuantum (QDs) dilaporkan.
PbS QDs larut
air ditutup dengan
campuran ligan 1-tiogliserol
(TGL)
dan ditiogliserol
(DTG)
telah disintesis
melalui kaedah koloid kimia pada
suhu bilik.
Pancaran PL daripada
PbS QDs telah
diuji pada
julat suhu 10 K sehingga 300 K dan kami mendapati bahawa pancaran PL telah
terjadi anjakan
biru dengan peningkatan
suhu. Daripada
mikroskop elektron transmisi tinggi (HRTEM),
purata saiz
PbS QDs ialah
sekitar 6 nm dan daripada data keamatan PL
bersepadu (IPL) berlawanan
ketumpatan kuasa
pengujaan telah menunjukkan penggabungan semula eksiton berlaku secara cekap di dalam suhu rendah dan
tinggi untuk
PbS QDs. Lebar
separuh ketinggian maksimum (FWHM) menunjukkan
pelebaran beransur
bersama peningkatan suhu disebabkan interaksi daripada pembawa cas dan
juga fonon.
Kata kunci: Fotoluminesens; inframerah dekat; PbS; titik kuantum
RUJUKAN
Alivisatos, A.P. 1996. Semiconductor
clusters, nanocrystals, and quantum dot. Science 271(5251): 933-937.
Ashari, F., Liew, J.Y.C., Talib,
Z.A., Yunus, W.M.M., Jian, L., Kee,
L., Dee, C. & Yeop Majlis,
B. 2016. Optical characterization of colloidal zinc selenide quantum dots
prepared through hydrothermal method. Sains Malaysiana45(8): 1191-1196.
Awschalom, D.D. & Johnston-Halperin, E.
2001. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Physical Review B 63:
1-5.
Binetti, E., Striccoli, M., Sibillano, T., Giannini, C., Brescia, R., Falqui,
A. & Comparelli, R. 2015. Tuning light emission
of PbS nanocrystals from infrared to visible range by
cation exchange. Science and Technology of Advanced Materials 16(5):
1-10.
Fomin, V.M., Gladilin, V.N., Devreese,
J.T., Pokatilov, E.P., Balaban,
S.N. & Klimin, S.N. 1998. Photoluminescence of
spherical quantum dots. Physical Review B 57(4): 2415-2425.
Gao, F.
2011. Effects of quantum confinement and shape on band gap of core/shell
quantum dots and nanowires. Applied Physics Letter 98(193105): 3-6.
Gruning, H., Kohary, K., Baranovskii, S.D., Rubel, O., Klar, P.J. & Ramakrishnan, A. 2004. Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells. Physics States Solid 112(1):
109-112.
Guchhait, A., Rath, A.K. & Pal, A.J. 2011. To make polymer: Quantum
dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Solar Energy Materials and Solar Cells 95(2): 651-656.
Hasbullah, N.F.,
Ng, J.S., Liu, H., Hopkinson, M., David, J.P.R., Badcock,
T.J. & Mowbray, D.J. 2009. Dependence of the electroluminescence on the
spacer layer growth temperature of multilayer quantum-dot laser structures. IEEE
Journal of Quantum Electronics 45(1): 79-85.
Iacovo,
A., Venettacci, C., Colace, L., Scopa, L. & Foglia, S. 2016. PbS colloidal
quantum dot photodetectors operating in the near infrared. Nature Publishing
Group 6: 1-9.
Jin, S.,
Zheng, Y., Li, A., Jin, S., Zheng, Y. & Li, A.
1997. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. Journal
Applied Physics 82(8): 3870-3873.
Klotz,
F., Jovanov, V., Kierig,
J., Clark, E.C., Rudolph, D., Heiss, D. & Bichler, M. 2010. Observation of an electrically tunable exciton gfactor in InGaAs/GaAs quantum dots. Applied Physics Letter 96:
053113.
Litvyak, V.M., Cherbunin, R.V. & Onushchenko,
A.A. 2017. Temperature dependence of the optical transitions of PbS quantum dots in silicate glasses. Bulletin of the
Russian Academy of Sciences: Physics 81(12): 1490-1492.
Liu,
Y., Kim, D., Morris, O.P., Zhitomirsky, D. &
Grossman, C. 2018. Origins of the Stokes shift in PbS quantum dots. ACS Nano 12: 2838-2845.
Marshall,
A.R., Beard, M.C. & Johnson, J.C. 2016. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films. Chemical Physics 471: 75-80.
Martini,
S., Teles, L.K., Marques, M., Marques, A.E.B. & Quivy, A.A. 2011. Radiative recombination mechanisms of
large InAs/GaAs quantum dots. World Journal of
Condensed Matter Physics 1: 161-166.
Moreels, I.,
Lambert, K., Smeets, D., Muynck,
D.D., Nollet, T., Martins, C., Vanhaecke,
F., Delerue, C., Allan, G. & Hens, Z. 2009.
Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10): 3023-3030.
Okamoto,
K., Niki, I., Shvartser,
A., Narukawa, Y., Mukai, T. & Scherer, A. 2004.
Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Publishing Group 3:
601-605.
Olkhovets, A.,
Hsu, R., Lipovskii, A. & Wise, F.W. 1998.
Size-dependent temperature variation of the energy gap in lead-salt quantum
dots. Physical Review L 81(16): 3539-3542.
Papagiorgis, P., Stavrinadis, A., Othonos, A., Konstantatos, G. & Itskos, G.
2016. The influence of doping on the optoelectronic properties of PbS colloidal quantum dot solids. Nature Publishing
Group 6(18735): 1-16.
Peterson,
J.J. & Krauss, T.D. 2006. Fluorescence spectroscopy of single lead sulfide
quantum dots. Nano Letters 6(3): 510-514.
Rajh, T.,
Olga, I., Micic, O.I. & Nozik,
A.J. 1993. Synthesis and characterization of surface-modified colloidal CdTe quantum dots. The Journal of Physical Chemistry 97(46):
11999.
Reilly,
N., Wehrung, M., O’Dell, R.A. & Sun, L. 2014. Ultrasmall colloidal PbS quantum
dots. Materials Chemistry and Physics 147: 1-4.
Rogach, A.L., Eychmüller, A., Hickey, S.G. & Kershaw, S.V.
2007. Reviews infrared-emitting colloidal nanocrystals: Synthesis, assembly,
spectroscopy, and applications. Small Journal 4: 536-557.
Ru,
E.C.L., Fack, J. & Murray, R. 2003. Temperature
and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Physical Review B 67:
245318.
Ryu, S.,
Park, J., Oh, J., Long, D.H., Kwon, K., Kim, Y., Lee, J.K. & Kim, J.H.
2009. Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized
aluminum oxide. Advanced Functional Materials 19: 1650-1655.
Sargent,
E.H. 2005. Infrared quantum dots. Advanced Materials 17(5): 515-522.
Shamsudin, S.
& Junas, J. 2018. Kajian terhadap sifat optik titik kuantum kadmium sulfida pada pelbagai nilai pH dan modifikasi permukaan dengan asid tioglikolik. Sains Malaysiana47(11):
2841-2849.
Szendrei,
K., Speirs, M., Gomulya,
W., Jarzab, D., Manca, M., Mikhnenko, O.V., Yarema, M., Kooi, B.J., Heiss, W. & Loi, M.A. 2012. Exploring the origin of the
temperature-dependent behavior of PbS nanocrystal
thin films and solar cells. Advanced Functional Materials 22: 1598-1605.
Tasco, V.,
Baranov, A. & Satpati, B. 2007. Molecular-beam
epitaxy of InSb/GaSb quantum dots. Journal of Applied Physics 101: 124309.
Turyanska, L.,
Moro, F., Knott, A.N., Fay, M.W., Bradshaw, T.D. & Patanè,
A. 2013. Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Particle &
Particle Systems Characterization 30: 945-949.
Turyanska, L., Elfurawi, U., Li, M., Fay, M.W. & Thomas, N.R. 2009.
Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing. Nanotechnology 20: 315604.
Turyanska, L., Patanè, A. & Henini, M. 2007.
Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots. Applied Physics Letter 90: 101913.
Varshni, P.
1967. Temperature dependence of the energy gap in semiconductors. Physica 34: 149-154.
Wang,
J.S., Smith, H.E. & Brown, G.J. 2015. Stability and aging studies of lead
sulfide quantum dot film: Photoabsorption,
morphology, and chemical state characteristics. Materials Chemistry and
Physics 154: 44-52.
Wise,
F.W. 2000. Lead salt quantum dots: The limit of strong quantum confinement. Accounts
of Chemical Research 33(11): 773-780.
Yamada, Y., Yasuda, H., Tayagaki, T. & Kanemitsu, Y.
2009. Temperature dependence of photoluminescence spectra of non-doped and
electron-doped SrTiO 3: Crossover from Auger
recombination to single-carrier trapping. Physical Review Letter 102:
247401.
Yang, L.M., Ye, Z.Z.,
Zeng, Y.J., Xu, W.Z., Zhu, L.P. & Zhao, B.H. 2006. Density controllable
growth of ZnO quantum dots by MOCVD. Solid State
Communications 138: 577-579.
Yin, Y. & Alivisatos, A.P. 2005. Colloidal nanocrystal synthesis and
the organic-inorganic interface. Nature 437: 664-670.
Yoffe, A.D. 2001.
Semiconductor quantum dots and related systems: Electronic, optical,
luminescence and related properties of low dimensional systems. Advances in
Physics 50(1): 1-208.
Yu, Y., Zhang, K. &
Sun, S. 2013. Effect of ligands on the photoluminescence properties of
water-soluble PbS quantum dots. Journal of Molecular
Structure 1031: 194-200.
Zhou, S., Liu, Z., Wang,
Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling,
X., Zhang, Y., Li, F., Yuan, J. & Ma, W. 2019. Towards scalable synthesis
of high-quality PbS colloidal quantum dots for
photovoltaic applications. Journal of Materials Chemistry C 7:
1575-1583.
*Pengarang untuk surat-menyurat; email: mazliana_ak@upm.edu.my
|