Sains Malaysiana 48(6)(2019): 1301–1310

http://dx.doi.org/10.17576/jsm-2019-4806-19

 

Recent Progress on Fabrication of Zinc Oxide Nanorod-Based Field Effect Transistor Biosensors

(Kemajuan Terkini Fabrikasi Biosensor Berasaskan Nanorod Kesan Medan Transistor Zink Oksida)

 

SITI SHAFURA A KARIM, CHANG-FU DEE, BURHANUDDIN YEOP MAJLIS & MOHD AMBRI MOHAMED*

 

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 20 Februari 2019/Diterima: 19 Mac 2019

 

ABSTRACT

Zinc oxide is a unique n-type semiconducting material, owing to wide bandgap of ~3.37 eV, non-toxic, bio-safe and biocompatible with high isoelectric point of ~9.5, make it as promising biomaterial to be utilized as sensing matrix in biosensor applications. In addition, ZnO that possess high electron affinity provide a good conduction pathway for the electrons hence result in significant electrical signal change upon detection to target biomolecules. Moreover, high surface area of ZnO nanorod enhance immobilization of enzymes, hence, increase the device performance. Field effect transistor (FET)-based biosensor offer simplicity in handling and label-free, has also become research topic among researchers for novel biosensor development. This review aims to explore the preparation of ZnO nanorod using hydrothermal method and investigate the fabrication of ZnO nanorod-based FET biosensor. Thus, contribute to enhance understanding towards biosensor development for health monitoring, especially based on FETs structure devices.

 

Keywords: Biosensor; field effect transistor; hydrothermal method; zinc oxide nanorod

 

ABSTRAK

Zink oksida adalah bahan semikonduktor jenis-n yang unik, disebabkan oleh ketinggian selebar ~3.37 eV, tidak toksik, selamat dan bioserasi dengan titik isoelektrik yang tinggi ~9.5, menjadikan ia sebagai biobahan yang sesuai digunakan sebagai matriks penderia dalam aplikasi biosensor. Di samping itu, ZnO yang mempunyai keafinan elektron yang tinggi memberikan laluan konduksi yang baik untuk elektron dan mengakibatkan perubahan isyarat elektrik yang signifikan apabila pengesanan kepada biomolekul sasaran. Tambahan pula, kawasan permukaan ZnO nanorod yang tinggi meningkatkan immobilisasi enzim, seterusnya meningkatkan prestasi peranti. Biosensor berasaskan kesan medan transistor (FET) adalah mudah dikendalikan dan bebas label, juga menjadi topik penyelidikan dalam kalangan penyelidik untuk pembangunan biosensor yang novel. Kajian ini bertujuan untuk meneroka penyediaan ZnO nanorod menggunakan kaedah hidroterma dan mengkaji fabrikasi biosensor FET yang berasaskan ZnO nanorod. Sekaligus menyumbang kepada kefahaman tentang pembangunan biosensor untuk memantau kesihatan, terutamanya yang berasaskan struktur FETs.

 

Kata kunci: Biosensor; kaedah hidroterma; kesan medan transistor; zink oksida nanorod

RUJUKAN

Agarwal, D.K., Kandpal, M. & Surya, S.G. 2019. Characterization and detection of cardiac troponin-t protein by using ‘aptamer’ mediated biofunctionalization of ZnO thin-film transistor. Applied Surface Science 466: 874-881.

Ahmad, R., Mahmoudi, T., Ahn, M.S. & Hahn, Y.B. 2018. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosensors and Bioelectronics 100: 312-325.

Ahmad, R., Ahn, M.S. & Hahn, Y.B. 2017. ZnO nanorods array based field-effect transistor biosensor for phosphate detection. Journal of Colloid and Interface Science 498: 292-297.

Ahmad, R., Tripathy, N., Jang, N.K., Khang, G. & Hahn, Y.B. 2015a. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sensors and Actuators B: Chemical 206: 146-151.

Ahmad, R., Tripathy, N., Park, J.H. & Hahn, Y.B. 2015b. A comprehensive biosensor integrated with a ZnO nanorod fet array for selective detection of glucose, cholesterol and urea. Chemical Communications 51(60): 11968-11971.

Ahmad, R., Tripathy, N. & Hahn, Y.B. 2013. High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosens Bioelectron 45: 281-286.

Arya, S.K., Saha, S., Ramirez-Vick, J.E., Gupta, V., Bhansali, S. & Singh, S.P. 2012. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta 737: 1-21.

Bakar, E.A., Mohamed, M.A., Ooi, P.C., Wee, M.F.M.R., Dee, C.F. & Majlis, B.Y. 2018. Fabrication of indium-tin-oxide free, all-solution-processed flexible nanogenerator device using nanocomposite of barium titanate and graphene quantum dots in polyvinylidene fluoride polymer matrix. Organic Electronics 61: 289-295.

Bangbai, C., Chongsri, K., Pecharapa, W. & Techidheera, W. 2013. Effect of Al and N doping on structural and optical properties of sol-gel derived ZnO thin films. Sains Malaysiana 42(2): 239-246.

Baratto, C. 2018. Growth and properties of ZnO nanorods by Rf-sputtering for detection of toxic gases. RSC Advances 8(56): 32038-32043.

Bhat, S.S., Qurashi, A. & Khanday, F.A. 2017. Zno nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises. TrAC Trends in Analytical Chemistry 86: 1-13.

Chen, Y., Ren, R., Pu, H., Guo, X., Chang, J., Zhou, G., Mao, S., Kron, M. & Chen, J. 2017. Field-effect transistor biosensor for rapid detection of ebola antigen. Scientific Reports 7(1): 10974.

Cheng, J.J., Nicaise, S.M., Berggren, K.K. & Gradečak, S. 2016. Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays. Nano Letters 16(1): 753-759.

Cheng, S., Hideshima, S., Kuroiwa, S., Nakanishi, T. & Osaka, T. 2015. Label-free detection of tumor markers using field effect transistor (Fet)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical 212: 329-334.

Ching, C., Ooi, P., Ng, S., Hassan, Z., Hassan, H. & Abdullah, M. 2014. Structural properties of zinc oxide thin films deposited on various substrates. Sains Malaysiana 43(6): 923-927.

Clark, J.L.C. & Lyons, C. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102(1): 29-45.

Dedova, T., Acik, I.O., Polivtseva, S., Krunks, M., Gromyko, I., Tõnsuaadu, K. & Mere, A. 2019. Influence of solution composition on sprayed Zno nanorods properties and formation process: Thermoanalytical study of the precursors. Ceramics International 45(2): 2887-2892.

Ditshego, N.M.J. 2018. Highly sensitive ZnO NWFET biosensor fabricated using top-down processes. Journal of Nano Research 55: 66-74.

Fathollahzadeh, M., Hosseini, M., Norouzi, M., Ebrahimi, A., Fathipour, M., Kolahdouz, M. & Haghighi, B. 2018. Immobilization of glucose oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for glucose detection. Journal of Solid State Electrochemistry 22(1): 61-67.

Gaiardo, A., Fabbri, B., Giberti, A., Guidi, V., Bellutti, P., Malagù, C., Valt, M., Pepponi, G., Gherardi, S., Zonta, G., Martucci, A., Sturaro, M. & Landini, N. 2016. Zno and Au/Zno thin films: Room-temperature chemoresistive properties for gas sensing applications. Sensors and Actuators B: Chemical 237: 1085-1094.

Galdamez, A., Serrano, A., Santana, G., Arjona, N., Arriaga, L.G., Tapia Ramirez, J., Oza, G. & Dutt, A. 2019. DNA probe functionalization on different morphologies of Zno/ Au nanowire for bio-sensing applications. Materials Letters 235: 250-253.

Gao, S.Y., Li, H.D., Yuan, J.J., Li, Y.A., Yang, X.X. & Liu, J.W. 2010. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction. Applied Surface Science 256(9): 2781-2785.

Gao, Z., Zhang, J., Li, J., Xue, X., Zhao, L., Lu, L., Deng, J., Wan, P., Cui, B. & Zou, D. 2018. Improving the fabrication uniformity of ZnO nanowire UV sensor by step-corner growth mode. Ceramics International 44(11): 11972-11982.

Garrote, B.L., Fernandes, F.C.B., Cilli, E.M. & Bueno, P.R. 2019. Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosensors and Bioelectronics 127: 215-220.

Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R.J. & Yang, P. 2003. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition 42(26): 3031-3034.

Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G. & Yang, P. 2005. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters 5(7): 1231-1236.

Hassanpour, A., Bogdan, N., Capobianco, J.A. & Bianucci, P. 2017. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials & Design 119: 464-469.

He, J., Zheng, X., Hong, X., Wang, W., Cao, Y., Chen, T., Kong, L., Wu, Y., Wu, Z. & Kang, J. 2018. Enhanced field emission of ZnO nanowire arrays by the control of their structures. Materials Letters 216: 182-184.

Ismail, A.S., Mamat, M.H., Md. Sin, N.D., Malek, M.F., Zoolfakar, A.S., Suriani, A.B., Mohamed, A., Ahmad, M.K. & Rusop, M. 2016. Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International 42(8): 9785-9795.

Jeong, Y.I., Shin, C.M., Heo, J.H., Ryu, H., Lee, W.J., Chang, J.H., Son, C.S. & Yun, J. 2011. Effects of growth duration on the structural and optical properties of ZnO nanorods grown on seed-layer ZnO/polyethylene terephthalate substrates. Applied Surface Science 257(24): 10358-10362.

Kaisti, M. 2017. Detection principles of biological and chemical fet sensors. Biosensors and Bioelectronics 98: 437-448.

Khan, M.I., Bhatti, K.A., Qindeel, R., Alonizan, N. & Althobaiti, H.S. 2017. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results in Physics 7: 651-655.

Khayatian, A., Asgari, V., Ramazani, A., Akhtarianfar, S.F., Kashi, M.A. & Safa, S. 2017. Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance. Materials Research Bulletin 94: 77-84.

Kim, Y.G., Tak, Y.J., Kim, H.J., Kim, W.G., Yoo, H. & Kim, H.J. 2018. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors. Scientific Reports 8(1): 5546.

Li, D., Li, Y., Zhang, Y. & Chang, F. 2019. Facile synthesis of three-dimensional Zno hierarchical microspheres composed of well-ordered nanorods by hydrothermal method. Results in Physics 12: 953-958.

Long, T., Yin, S., Takabatake, K., Zhnag, P. & Sato, T. 2008. Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Research Letters 4(3): 247.

Mahmood, K., Hameed, M., Rehman, F., Khalid, A., Imran, M. & Mehran, M.T. 2019. A multifunctional blade-coated ZnO seed layer for high-efficiency perovskite solar cells. Applied Physics A 125(2): 83.

Mahmoud, A., Echabaane, M., Omri, K., El Mir, L. & Ben Chaabane, R. 2019. Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. Journal of Alloys and Compounds 786: 960-968.

Medawar-Aguilar, V., Jofre, C.F., Fernández-Baldo, M.A., Alonso, A., Angel, S., Raba, J., Pereira, S.V. & Messina, G.A. 2019. Serological diagnosis of toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Analytical Biochemistry 564-565: 116-122.

Mohammed, A.J. & Hassan, T.A.A. 2019. A new piezo-amperometric sensing method based on comb-like nanostructured zinc oxide thin films for the efficient detection of Na2So4. Energy Procedia 157: 1191-1201.

Mohammed, A.M., Ibraheem, I.J., Obaid, A.S. & Bououdina, M. 2017. Nanostructured ZnO-based biosensor: DNA immobilization and hybridization. Sensing and Bio-Sensing Research 15: 46-52.

Park, J.S., Mahmud, I., Shin, H.J., Park, M.K., Ranjkesh, A., Lee, D.K. & Kim, H.R. 2016. Effect of surface energy and seed layer annealing temperature on Zno seed layer formation and ZnO nanowire growth. Applied Surface Science 362: 132-139.

Resmini, A., Anselmi-Tamburini, U., Emamjomeh, S.M., Paolucci, V., Tredici, I.G. & Cantalini, C. 2016. The influence of the absolute surface area on the No2 and H2 gas responses of ZnO nanorods prepared by hydrothermal growth. Thin Solid Films 618: 246-252.

Ridhuan, N.S., Abdul Razak, K. & Lockman, Z. 2018. Fabrication and characterization of glucose biosensors by using hydrothermally grown Zno nanorods. Scientific Reports 8(1): 13722.

Saranya, P.E. & Selladurai, S. 2017. Facile synthesis of self-assembled flower-like mesoporous zinc oxide nanoflakes for energy applications. International Journal of Nanoscience 17(01n02): 1760002.

Shafura, A.K., Saurdi, I., Sin, N.D.M., Noor, U.M., Mamat, M.H., Alrokayan, S.A.H., Khan, H.A. & Rusop, M. 2018. Structural and electrical properties of nanostructured ZnO. AIP Conference Proceedings 1963(1): 020052.

Shafura, A.K., Saurdi, I., Sin, N.D.M., Noor, U.M., Mamat, M.H., Alrokayan, S.a.H., Khan, H.A. & Rusop, M. 2018. Structural properties of Zno nano-template layer by spin coating method. AIP Conference Proceedings 1963(1): 020034.

Sihar, N., Tiong, T.Y., Dee, C.F., Ooi, P.C., Hamzah, A.A., Mohamed, M.A. & Majlis, B.Y. 2018. Ultraviolet light-assisted copper oxide nanowires hydrogen gas sensor. Nanoscale Research Letters 13(1): 150.

Singh, A.C., Asif, M.H., Bacher, G., Danielsson, B., Willander, M. & Bhand, S. 2019a. Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-estradiol. Biosensors and Bioelectronics 126: 15-22.

Singh, N.K., Thungon, P.D., Estrela, P. & Goswami, P. 2019b. Development of an aptamer-based field effect transistor biosensor for quantitative detection of plasmodium falciparum glutamate dehydrogenase in serum samples. Biosensors and Bioelectronics 123: 30-35.

Syu, Y.C., Hsu, W.E. & Lin, C.T. 2018. Review-Field-effect transistor biosensing: Devices and clinical applications. ECS Journal of Solid State Science and Technology 7(7): Q3196-Q3207.

Tripathy, N. & Kim, D.H. 2018. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Convergence 5(1): 27-37.

Yu, Z., Li, H., Qiu, Y., Yang, X., Zhang, W., Xu, N., Sun, J. & Wu, J. 2017. Size-controllable growth of Zno nanorods on Si substrate. Superlattices and Microstructures 101: 469-479.

Yue, H.Y., Song, S.S., Guo, X.R., Huang, S., Gao, X., Wang, Z., Wang, W.Q., Zhang, H.J. & Wu, P.F. 2019a. Three- Dimensional ZnO nanosheet spheres/graphene foam for electrochemical determination of levodopa in the presence of uric acid. Journal of Electroanalytical Chemistry 838: 142-147.

Yue, H.Y., Wu, P.F., Huang, S., Gao, X., Wang, Z., Wang, W.Q., Zhang, H.J., Song, S.S. & Guo, X.R. 2019b. Electrochemical determination of levodopa in the presence of uric acid using ZnO nanoflowers-reduced graphene oxide. Journal of Materials Science: Materials in Electronics 30(4): 3984- 3993.

Yun, S., Lee, J., Yang, J. & Lim, S. 2010. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate. Physica B: Condensed Matter 405(1): 413-419.

Zhai, Y., Liu, D., Jiang, Y., Chen, X., Shao, L., Li, J., Sheng, K., Zhang, X. & Song, H. 2019. Near-infrared-light-triggered photoelectrochemical biosensor for detection of alpha-fetoprotein based on upconversion nanophosphors. Sensors and Actuators B: Chemical 286: 468-475.

Zhang, Z., Chen, Y. & Guo, J. 2019. ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures 105: 212-218.

Zong, X. & Zhu, R. 2018. ZnO nanorod-based fet biosensor for continuous glucose monitoring. Sensors and Actuators B: Chemical 255: 2448-2453.

 

*Pengarang untuk surat-menyurat; email: ambri@ukm.edu.my

 

 

sebelumnya