Sains Malaysiana 49(3)(2020): 527-536
http://dx.doi.org/10.17576/jsm-2020-4903-07
Metalotionein
1 daripada Eleusine
indica
L. Memberikan Toleransi terhadap Logam Berat dalam Escherichia coli
(Metallothionein
1 from Eleusine indica
L. Confers Heavy Metal Tolerance in Escherichia
coli)
ROOHAIDA
OTHMAN1,2* & NORUL HUDA MOHD NASIR1
1Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Institute of Systems
Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan:
20 Mei 2019/Diterima: 5 Disember 2019
ABSTRAK
Metalotionein (MT) berpotensi besar dalam pemuliharaan
alam sekitar disebabkan peranannya yang penting dalam metabolisme
dan penyahtoksikan ion logam melalui proses pengkelatan ion logam.
cDNA MT1 daripada Eleusine
indica L. (eiMT1) telah diamplifikasi dan diekspreskan dalam Escherichia coli. Pengekspresan protein rekombinan diaruh menggunakan
1 mM IPTG pada 37°C selama 4 jam. Protein rekombinan dengan berat
molekul 12 kDa telah diperoleh dan ditulenkan menggunakan dua kaedah
penulenan iaitu kromatografi penukaran ion dan kromatografi penurasan
gel. Analisis jujukan protein rekombinan telah mengesahkan bahawa
protein eiMT yang diekspreskan mengandungi jujukan asid amino sebagaimana
dijangkakan bagi protein yang dikodkan oleh cDNA eiMT1.
Untuk menilai keupayaan protein eiMT ini memberikan toleransi terhadap
logam berat bagi E. coli,
sel bakteria yang ditransformasikan dengan plasmid yang membawa
cDNA eiMT1 telah dikulturkan dalam media yang mengandungi
ion tembaga (Cu), zink (Zn), besi (Fe), kromium (Cr) dan kadmium
(Cd). Sel yang mengekspres eiMT didapati menunjukkan tahap pertumbuhan
yang lebih tinggi berbanding sel jenis liar di dalam media yang
mengandungi kesemua ion logam serta mampu bermandiri di dalam Cu,
Zn, Fe dan Cr sehingga kepekatan 500 µM manakala bagi Cd sehingga
kepekatan logam 400 µM. Hasil kajian ini menunjukkan bahawa eiMT
membolehkan peningkatan toleransi sel E. coli terhadap logam berat dan memainkan peranan
penting dalam menyingkirkan ion logam berlebihan. Hal ini mencadangkan
bahawa eiMT juga kemungkinan mampu melakukan penyahtoksikan ion
logam berlebihan dalam E. indica.
Oleh itu, sel E. coli yang membawa cDNA eiMT di samping tumbuhan E. indica sendiri boleh diaplikasikan dalam proses remediasi
dengan menyerap logam berat dalam persekitaran yang tercemar.
Kata kunci: Eleusine indica L.; logam
berat; metalotionein; protein rekombinan; rumput sambau
Abstract
Metallothionein (MT) has a
huge potential
in environmental conservation due to its important
role in metal
ion metabolism and detoxification by chelating the metal ions. MT1 cDNA from Eleusine indica
L. (eiMT1) was amplified
and expressed in Escherichia coli cells. Recombinant protein
expression was induced using 1 mM
IPTG at 37oC for 4 h. Recombinant protein with the molecular mass of 12 kDa was obtained and purified through
two purification methods
involving ion exchange chromatography and gel filtration chromatography.
Sequence analysis of the recombinant protein
confirmed that the expressed
eiMT protein contained
amino acid sequence as expected for the protein encoded by the eiMT1 cDNA.
To evaluate the ability of this
eiMT protein to confer heavy metal tolerance in E. coli, the bacterial cells transformed
with the recombinant plasmids containing the eiMT1 cDNA were
grown in media
containing copper (Cu), zinc (Zn), iron (Fe), chromium (Cr) and
cadmium (Cd) ions. The eiMT-expressing cells showed higher
growth level compared to wild type cells in media containing all
metal ions and was able to survive in Cu, Zn, Fe and Cr until 500
µM in concentration while for Cd until 400 µM. These
results showed that eiMT allowed enhanced heavy metal tolerance
in E. coli cells and played an important role in removing
excess metal ions. This
suggested that the eiMT protein might also be capable of detoxifying
metal ions in E. indica. Hence, both the E.
coli cells containing the
eiMT cDNA as well as the E. indica
plant itself may be applied in remediation process by adsorbing
heavy metals in polluted environment.
Keywords:
Eleusine
indica L.; goose grass; heavy metal; metallothionein; recombinant protein
RUJUKAN
Ali, H., Khan, E. & Ilahi, I. 2019. Environmental
chemistry and ecotoxicology of hazardous heavy metals: Environmental
persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 6730305.
Amiard,
J.C., Amiard-Triquet, C., Barka, S., Pellerin, J. & Rainbow,
P.S. 2006. Metallothioneins in aquatic invertebrates: Their role
in metal detoxification and their use as biomarkers. Aquatic
Toxicology 76(2): 160-202.
Begg,
S.L., Eijkelkamp, B.A., Luo, Z., Couñago, R.M., Morey, J.R., Maher,
M.J., Ong, C.Y., McEwan, A.G., Kobe, B., O’Mara, M.L., Paton, J.C.
& McDevitt, C.A. 2015. Dysregulation of transition metal ion
homeostasis is the molecular basis for cadmium toxicity in Streptococcus
pneumoniae. Nature Communications
6: 6418.
Bennion,
B.J. & Daggett, V. 2003. The molecular basis for the chemical
denaturation of proteins by urea. Proceedings
of the National Academy of Science 100(9): 5142-5147.
Blindauer,
C.A. 2011. Bacterial metallothioneins: Past, present, and questions
for the future. Journal of
Biological Inorganic Chemistry 16: 1011-1024.
Cobbett,
C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal
detoxification. Current Opinion
in Plant Biology 3(3): 211-216.
Cobbett,
C.S. & Goldsbrough, P. 2002. Phytochelatins and metallothioneins:
Roles in heavy metal detoxification and homeostasis. Annual
Review of Plant Biology 53: 159-182.
Eapen,
S. & D’Souza, S.F. 2005. Prospects of genetic engineering of
plants for phytoremediation of toxic metals. Biotechnology
Advances 23(2): 97-114.
Foster,
A.W. & Robinson, N.J. 2011. Promiscuity and preferences of metallothioneins:
The cell rules. BMC Biology
9: 25.
Freisinger,
E. 2011. Structural features specific to plant metallothioneins.
Journal of Biological Inorganic Chemistry
16(7): 1035-1045.
Holm,
L.G., Plucknett, D.L., Pancho, J.V. & Herberger, J.P. 1977.
The World's Worst Weeds: Distribution and Biology.
East West Center: The University Press of Hawaii, Honolulu p. 609.
Honarmand
Ebrahimi, K., Hagedoorn, P.L. & Hagen, W.R. 2015. Unity in the
biochemistry of the iron-storage proteins ferritin and bacterioferritin.
Chemical Reviews 115(1): 295-326.
Hossain,
S.T., Mallick, I. & Mukherjee, S.K. 2012. Cadmium toxicity in
Escherichia coli: Cell morphology, Z-ring
formation and intracellular oxidative balance. Ecotoxicology and Environmental Safety 86: 54-59.
Kozminska,
A., Wiszniewska, A., Hanus Fajerska, E. & Muszynska, E. 2018.
Recent strategies of increasing metal tolerance and phytoremediation
potential using genetic transformation of plants. Plant
Biotechnology Reports 12(1): 1-14.
Krezel,
A. & Maret, W. 2017. The functions of metamorphic metallothioneins
in zinc and copper metabolism. International
Journal of Molecular Sciences 18: 1237-1257.
Laemmli,
U.K. 1970. Cleavage of structural proteins during the assembly of
the head of bacteriophage T4. Nature
227: 680-685.
Lee,
L.J. & Ngim, J. 2000. A first report of glyphosate-resistant
goosegrass (Eleusine indica (L) Gaertn) in Malaysia.
Pest Management Science
56: 336-339.
Leszczyszyn,
O.I., Imam, H.T. & Blindauer, C.A. 2013. Diversity and distribution
of plant metallothioneins: A review of structure, properties and
functions. Metallomics 5(9): 1146-1169.
Ma,
M., Lau, P.S., Jia, Y.T., Tsang, W.K., Lam, S.K.S., Tam, N.F.Y.
& Wong, Y.S. 2003. The isolation and characterisation of Type
1 metallothionein (MT) cDNA from heavy-metal tolerant plant, Festuca
rubra cv. Merlin. Plant
Science 164: 51-60.
Mahajan,
P. & Kaushal, J. 2018. Role of phytoremediation in reducing
cadmium toxicity in soil and water. Journal
of Toxicology 2018: 1-16.
Mishra,
S. & Dubey, R.S. 2006. Heavy metal uptake and detoxification
mechanisms in plants. International
Journal of Agricultural Research 1(2): 122-141.
Moreau,
J.L., Baudrimont, M., Carrier, P., Peltier, G. & Bourdineaud,
J.P. 2008. Metal binding and antioxidant properties of chimeric
tri- and tetra-domained metallothioneins. Journal
of Biochemistry and Molecular Biology 90(5): 705-716.
Morris,
C.A., Nicolaus, B., Sampson, V., Harwood, J.L. & Kille, P. 1999.
Identification and characterization of a recombinant metallothionein
protein from a marine alga, Fucus
vesiculosus. Journal of
Biochemistry 338: 553-560.
Mudalkar,
S., Golla, R., Sengupta, D., Ghatty, S. & Reddy, A.R. 2014.
Molecular cloning and characterisation of metallothionein type 2a
gene from Jatropha curcas L., a promising biofuel
plant. Molecular Biology Reports
41: 113-124.
Nezhad,
R.M., Shahpiri, A. & Mirlohi, A. 2013. Discrimination between
two rice metallothionein isoforms belonging to type 1 and type 4
in metal-binding ability. Biotechnology
and Applied Biochemistry 60(3): 275-282.
Nik Marzuki, S.,
Roslina, M.Y., Che Radziah, C.M.Z. & Ismanizan, I. 2010. Transformation
of metallothionein gene (eiMT1)
from Eleusine indica into tobacco, Nicotiana
tabacum by Agrobacterium tumefaciens. Sains
Malaysiana 39(6): 927-933.
Nik Marzuki, S.,
Shaiful, A.S., Chin, I.S., Belinda, M.Y.S., Mushrifah, I., Shahrul
Hisham, Z.A. & Shahidan, S. 2006. Molecular cloning and sequencing
of metallothionein gene gene from Elusine indica. Malaysian Applied
Biology 35: 71-74.
Pascal,
M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni,
G., Henschel, S., Meister, K., Haluza, D., Martin-Olmedo, P. &
Medina, S. 2013. Assessing the public health impacts of urban air
pollution in 25 European cities: Results of the Aphekom project.
Science of the Total Environment
49: 390-400.
Pilon-Smits,
E. 2005. Phytoremediation. Annual
Review of Plant Biology 56: 15-39.
Salam, M.A., Paul, S.C., Shaari, F.I., Rak, A.E.,
Ahmad, R.B. & Kadir, W.R. 2019. Geostatistical distribution
and contamination status of heavy metals in the sediment of Perak
River, Malaysia. Hydrology 6(2): 30. DOI:10.3390/hydrology6020030.
Sekhar,
K., Priyanka, B., Reddy, V.D. & Rao, K.V. 2011. Metallothionein
1 (CcMT1) of pigeonpea (Cajanus
cajan, L.) confers enhanced tolerance to copper and cadmium
in Escherichia coli and
Arabidopsis thaliana.
Environmental and Experimental Botany 72:
131-139.
Shazili,
N.A.M., Yunus, K., Ahmad, A.S., Abdullah, N. & Rashid, M.K.A.
2006. Heavy metal pollution status in the Malaysian aquatic environment.
Aquatic Ecosystem Health 9: 137-145.
Shevchenko,
A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. 2006. In-gel
digestion for mass spectrometric characterisation of proteins and
proteomes. Nature Protocols 1(6): 2856-2860.
Shuhaimi-Othaman,
M., Nadzifah, Y., Nur-Amalina, R. & Umairah, N.S. 2013. Deriving
freshwater quality criteria for copper, cadmium, aluminum and manganese
for protection of aquatic life in Malaysia. Chemosphere
90: 2631-2636.
Simes,
D.C., Bebianno, M.J. & Moura, J.G. 2003. Isolation and characterisation
of metallothionein from the clam Ruditapes
decussatus. Aquatic Toxicology
63: 307-318.
Tarasava,
K., Loebus, J. & Freisinger, E. 2016. Localization and spectroscopic
analysis of the Cu(I) binding site in wheat metallothionein Ec-1.
International Journal of Molecular Sciences
17: 371.
Tchounwou,
P.B., Yedjou, C.G., Patlolla, A.K. & Sutton, D.J. 2012. Heavy
metal toxicity and the environment. Experientia
Supplementum 101: 133-164.
Vanparys,
C., Dauwe, T., Van Campenhout, K.V., Bervoets, L., De Coen, W.,
Blust, R. & Eens, M. 2008. Metallothionein (MTs) and δ-aminolevulinic
acid dehydratase (ALAd) as biomarkers of metal pollution in great
tits (Parus major) along a pollution gradient. Science of The Total Environment 401: 184-193.
Vasak,
M. 2005. Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology
19: 13-17.
Vasak,
M. 1991. Metal removal and substitution in vertebrate and invertebrate
metallothioneins. In Methods
in Enzymology Metallochemistry, edited by
Riodan, J.F. & Vallee, B.L. 205: 452-458.
Watson,
H., Videvall, E., Andersson, M.N. & Isaksson, C. 2017. Transcriptome
analysis of a wild bird reveals physiological responses to the urban
environment. Scientific Reports
7: 44180.
Xia,
Y., Lv, Y., Yuan, Y., Wang, G., Chen, Y., Zhang, H. & Shen,
Z. 2012. Cloning and characterisation of a type 1 metallothionein
gene from the copper-tolerant plant Elsholtzia
haichowensis. Acta Physiologia
Plantarum 34: 1819-1826.
Yang,
Z., Wu, Y., Li, Y., Ling, H.L. &
Chu, C. 2009. OsMT1a, a type 1 metallothionein, plays the pivotal
role in zinc homeostasis and drought tolerance in rice. Plant
Molecular Biology 70: 219-229.
Ziller,
A. & Fraissinet-Tachet, L. 2018. Metallothionein diversity and
distribution in the tree of life: A multifunctional protein. Metallomics 10(11): 1549-1559.
*Pengarang
untuk surat-menyurat; email: roohaida@ukm.edu.my
|