Sains Malaysiana
49(3)(2020): 653-660
http://dx.doi.org/10.17576/jsm-2020-4903-20
The Effect of Different
Concentrations of Calcium
Silicate-Maghemite Coating towards Magnetic Behavior and Bioactivity
(Kesan Kepekatan Berbeza Salutan Kalsium Silikat-Magemit
kepada Tingkah Laku Magnet dan Aktiviti Bionya)
NOR HAZIRAH MOHD AKHIRUDIN, ROSLINDA SHAMSUDIN & NORINSAN KAMIL OTHMAN*
School of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 10 September 2019/Diterima: 5 Disember 2019
ABSTRACT
In this study, maghemite (γ-Fe2O3) as magnetic
nanoparticles (MNPs) material was coated by ceramic materials, calcium
silicate (CaSiO3) with different concentrations to suit
the medical treatment needed. Different concentration was studied
to assess the optimal parameter and ability to maintain post-coated
superparamagnetic properties of γ-Fe2O3.
Concentration of CaSiO3 coated on γ-Fe2O3
was prepared with 3 parameters, 97:3, 95:5, and 93:7% w/w, respectively. Magnetic
properties of CaSiO3-γ-Fe2O3
were characterized by VSM proceeded with a bioactive study analyzed
with FESEM and FTIR after simulated body fluid immersion for 5 days
at 37±1ºC.
CaSiO3-γ-Fe2O3 with concentration
95:5% w/w exhibit the highest magnetization makes it the most optimum
with the average coercivity is 1.6G. FESEM analysis illustrates
that the existence of the apatite layer after 5 days of simulated
body fluid (SBF) immersion on CaSiO3-γ-Fe2O3
coating sample, which confirmed the bioactive properties.
Therefore, CaSiO3-γ-Fe2O3 concentration
at ratio 95:5% w/w can be a promising new biomaterial candidate
to be applied in the medical field.
Keywords: Bioactive; calcium
silicate coating; maghemite; superparamagnetic
ABSTRAK
Dalam kajian ini, magemit (γ-Fe2O3)
sebagai bahan nanozarah magnetik (MNPs) disalut oleh bahan
seramik iaitu kalsium silikat (CaSiO3) dengan kepekatan
yang berbeza untuk memenuhi keperluan rawatan perubatan. Kepekatan
yang berbeza dikaji untuk menentukan parameter yang ideal dan keupayaan
untuk mengekalkan sifat superparamagnetik yang dimiliki oleh γ-Fe2O3
selepas proses salutan. Kepekatan CaSiO3 menyalut
kepada γ-Fe2O3 disediakan dengan 3 parameter
yang berbeza, 97:3% w/w, 95:5% w/w dan 93:7% w/w. Sifat magnetik
CaSiO3-γ-Fe2O3 dicirikan oleh
VSM kemudiannya
diteruskan dengan kajian sifat bioaktif yang dianalisis menggunakan
FESEM dan FTIR selepas direndamkan ke dalam larutan simulasi badan
(SBF) selama hari pada 37 ± 1ºC.
CaSiO3-γ-Fe2O3 dengan kepekatan
95:5% w/w menunjukkan nilai
magnetisasi tertinggi menjadikannya parameter paling optimum dengan
purata koersiviti ialah 1.6G. Analisis FESEM menunjukkan kehadiran lapisan apatit selepas 5 hari rendaman
SBF pada sampel CaSiO3-γ-Fe2O3
mengesahkan sifat bioaktif yang dimiliki. Oleh itu, kepekatan CaSiO3-γ-Fe2O3
pada nisbah 95:5% w/w mempunyai potensi untuk dijadikan calon
biobahan yang baru untuk diaplikasikan dalam bidang
perubatan.
Kata kunci: Bioaktif; magemit; salutan kalsium silikat; superparamagnetik
RUJUKAN
Abdul Azam,
F.A., Ismail, H., Shamsudin, R., Ng, M.H. & Abdul Hamid, M.A.
2018. Pengaruh suhu sinteran terhadap kebioaktifan wolastonit daripada
abu sekam padi dan batu kapur. Sains Malaysiana 47(4): 819-827.
Ali, A., Zafar,
H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S. & Hussain, A.
2016. Synthesis, characterization, applications, and challenges
of iron oxide nanoparticles. Nanotechnology, Science and Applications
9: 49-67.
Allaker, R.P.
& Yuan, Z. 2019. Nanoparticles and
the control of oral biofilms. Nanobiomaterials in Clinical Dentistry
2019: 243-275.
Buga,
C., Hunyadi, M., Gacsi, Z., Hegedus, C., Hakl, J., Schmidt, U.,
Ding, S.J. & Csik, A. 2019. Calcium
silicate layer on titanium fabricated by electrospray deposition.
Materials Science & Engineering 98: 401-408.
Burinaru,
T.A., Volmer, M., Avram, M., Tucureanu, V., Avram, A., Tincu, B.,
Marculescu, C., Matei, A. Marinescu, R. & Militaru, M. 2019.
Antibody functionalized magnetic nanoparticles for circulating tumor
cells detection and capture using magnetophoresis. IOP Conference Series: Materials Science and Engineering 485(1): 1-6.
Catalano,
E., Miola, M., Ferraris, S., Novak, S., Oltolina, F., Cochis, A.,
Prat, M., Verne, E., Rimondini, L. & Follenzi, A. 2017. Magnetite
and silica-coated magnetite nanoparticles are highly biocompatible
on endothelial cells in vitro. Biomedical Physics & Engineering
Express 3(2): 025015.
Damas, J.O.,
Moscardini, S.B., Oliveira, L.R., Silva, R.R.D., Nassar, E.J., Faria,
E.H.D., Ciuffi, K.J., Ribeiro, S.J.L. & Rocha, L.A. 2019. Effect
of silica coating on the catalytic activity of maghemite nanoparticles
impregnated into mesoporous silica matrix. Materials Chemistry
and Physics 225: 145-152.
Dulińska-Litewka,
J., Łazarczyk, A., Hałubiec, P., Szafranski, O., Karnas,
K. & Karewicz, A. 2019. Superparamagnetic iron oxide nanoparticles-Current
and prospective medical applications. Materials 12(4): 1-26.
Giannoulatou,
V., Theodorou, G.S., Zorba, T., Kontonasaki, E., Papadopoulou, L.,
Kantiranis, N., Chrissafis, K., Zachariadis, G. & Paraskevopoulou,
K.M. 2018. Magnesium calcium silicate bioactive glass doped with
copper ions: Synthesis and in vitro bioactivity characterization.
Journal of Non-Crystalline Solids 500: 98-109.
Gopal, S.V.
& Joe, I.H. 2017. Bioactivity of superparamagnetic maghemite
nanorods capped with dl-alanine. Journal of Molecular Liquids
234: 382-390.
Guerrini,
L., Alvarez-Puebla, R.A. & Pazos-Perez, N. 2018. Surface modifications
of nanoparticles for stability in biological fluids. Journal
of Materials 11(7): 1-28.
Ismail, H.,
Shamsudin, R. & Abdul Hamid, M.A. 2016. Effect of autoclaving
and sintering on the formation of β-wollastonite. Materials
Science and Engineering 58: 1077-1081.
Khodabakhshi,
M. & Bahari, A. 2017. Investigation and characterization of
maghemite (γ-Fe2O3) nanoparticles and
its cytotoxicity studies. Indian Journal of Pharmaceutical Education
and Research 51: 295-301.
Kokubo, T.
1991. Bioactive glass ceramic: Properties and applications. Biomaterials
12: 155-163.
Laurent, S.,
Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. & Muller,
R.N. 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization,
vectorization, physicochemical characterization and biological application.
Chem. Rev. 108: 2064-2110.
Lee, Y.L.,
Wang, W.H., Lin, F.H. & Lin, C.P. 2017. Hydration behaviors
of calcium silicate-based biomaterials. Journal of the Formosan
Medical Association 116(6): 424-431.
Li, K., Yu,
J., Xie, Y., You, M., Huang, L. & Zheng, X. 2016. The effects
of cerium oxide incorporation in calcium silicate coating on bone
mesenchymal stem cell and macrophage responses. Biol. Trace Elem.
Res. 174(1): 198-207.
Liu, X., Morra,
M., Carpi, A. & Li, B. 2008. Bioactive calcium silicate ceramics
and coatings. Biomedicine & Pharmacotheraphy 62: 526-529.
Matos, J.C.,
Goncalves, M.C., Pereira, L.C.J., Vieira, B.J. & Waerenborgh,
J.C. SPIONs prepared in air through improved synthesis methodology:
The influence of γ-Fe2O3/Fe3O4
ration and coating composition on magnetic properties. Nanomaterial
9(7): 943.
Menon, P.K.,
Sharma, A., Lafuente, J.V., Muresanu, D.F., Aguilar, Z.P., Wang,
A., Patnaik, R., Mossler, H. & Sharma, H.S. 2017. Intravenous
administration of functionalized magnetic iron oxide nanoparticles
does not induce CNS injury in the rat: Influence of spinal cord
trauma and cerebrolysin treatment. International Review of Neurobiology
137: 47-63.
Nazari, M.,
Ghasemi, N. & Maddah, H. 2014. Synthesis and characterization
of maghemite nanopwders by chemical precipitation method. J.
Nanosruct. Chem. 4: 99.
Ngadiman,
N.H.A., Idris, A., Muhammad, I., Kurniawan, D., Yusof, N.M. &
Nasiri, R. 2015. γ-Fe2O3
nanoparticles filled polyvinyl alcohol as potential biomaterial
for tissue engineering scaffold. Journal of the Mechanical Behaviour of Biomedical Materials 49: 90-104.
Nurdin, I.,
Johan, M., Yaacob, I., Ang, B. & Andriyana, A. 2014. Synthesis,
characterisation and stability of superparamagnetic maghemite nanoparticle
suspension. Mater. Res. Innov. 18: 200-203.
Ohtsuki, C.,
Kushitani, H., Kokubo, T., Kotani, S. & Yamamuro, T. 1991. Apatite
formation on the surface of Ceravital-type glass-ceramic in the
body. J. Biomed. Mater. Res. 25: 1363-1670.
Rabel, M.,
Warncke, P., Gruttner, C., Bergemann, C., Kurland, H.D., Muller,
R., Dugandzi, V., Thamm, J., Muller, F.A., Popp, J., Cialla-May,
D. & Fischer, D. 2019. Simulation of the long-term fate of superparamagnetic iron oxide-based
nanoparticles using simulated biological fluids. Nanomedicine
14(13): 1681-1706.
Shokrollahi,
H. 2017. A review of the magnetic properties, synthesis methods
and applications of maghemite. Journal
of Magnetism and Magnetic Materials 426: 74-81.
Silva, A.K.A.,
Espinosa, A., Kolosnjaj-Tabi, J., Wilhelm, C. & Gazeau, F. 2016.
Medical applications of iron oxide nanoparticles. In Iron Oxides: From Nature to Applications,
edited by Faivre, D. New York: John Wiley &
Sons, Inc.pp. 423-471.
Sun, S.N.,
Wei, C., Zhu, Z.Z., Huo, Y.L., Subbu, S.V. & Chuan, X.Z. 2014.
Magnetic iron oxide nanoparticles: Synthesis and surface coating
techniques for biomedical applications. Chinese Physical Society
23(3): 037503.
Syed Nuzul,
F.S.A., Shamsudin, R. & Firuz, Z. 2016. Synthesis of 60 (wt.)
% CaO sol-gel derived glass-ceramic and in
vitro bioactivity assestment in SBF solution. Key Engineering
Materials 673: 161-170.
Wu, W., Xiou,
X.H., Zhang, S.F., Peng, T.C., Zhou, J., Ren, F. & Jiang, C.Z.
2010. Synthesis and magnetic properties of maghemite (γ-Fe2O3)
short nanotubes. Nanoscale
Research Letters 5(9): 1474-1479.
Xie, Y., Li,
H., Zhang, C., Gu, X., Zheng, X. & Huang, L. 2014. Graphene-reinforced
calcium silicate coatings for load-bearing implants. Biomedical
Materials 9(2): 1-7.
Yu, J., Xu,
L., Li, K., Xie, N., Xi, Y, Wang, Y., Zheng, X., Chen, X., Wang,
M. & Ye, X. 2017. Zinc-modified calcium silicate coatings promote
osteogenic differentiation through TGF- β/Smad
pathway and osseointegration in osteopenic rabbits. Scientific
Reports 7(1): 1-13.
Zamarron,
D.R., Hernandez, D.A.C. & Aragon, L.B. 2009. Mechanical properties
and apatite forming ability of PMMA bone cements. Materials and
Design 30: 3318-3324.
Zhu, Y.J.,
Guo, X.X. & Sham, T.K. 2016. Calcium silicate-based drug delivery
systems. Expert Opinion on Drug Delivery 14(2): 215-228.
*Pengarang untuk surat-menyurat; email: insan@ukm.edu.my
|