Sains
Malaysiana 50(12)(2021): 3481-3491
http://doi.org/10.17576/jsm-2021-5012-02
Carbon-Ion Beam Radiosensitivity Study and Biological
Responses of High-YieldingRice Line, MR219-PL-5
(Kajian
Radiopekaan Sinar Ion Karbon dan Tindak Balas Biologi Titisan Padi Berhasil Tinggi, MR219-PL-5)
ASRAPIL WAITUL FIFIKA1,
ASMUNI MOHD IKMAL1, AHMAD FAIZ2, HASAN NOR’AISHAH3,
HARUN ABDUL RAHIM2, HUSSEIN SOBRI2 & ABD AZIZ
SHAMSUDIN NORAZIYAH1*
1Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Agrotechnology
and Biosciences Division, Malaysian Nuclear Agency Bangi, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
3Faculty
of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus
Kuala Pilah, Negeri Sembilan, Malaysia
Diserahkan: 26 Oktober
2020/Diterima: 14 April 2021
ABSTRACT
The
carbon ion-beam has emerged as a novel physical mutagen for creating genetic
variability and crop improvement. In this study, seeds of a high-yielding
pyramided rice line MR219-PL-5 were exposed to carbon ion beam irradiation at
10, 20, 40, 60, 80, and 100 Gy. The radiosensitivity test was conducted to
determine the optimum dose of carbon ion beam irradiation based on the lethal
dose 50% (LD50) using Sandwich Blotter Technique. The biological
responses of carbon-ion beam irradiation were also observed in other
characteristics such as germination rate (GeR), survival rate (SR), growth rate
(GRoR), shoot length (SL), root length (RL), seedling height (SH), days to
flowering (DTF), fertility rate (FR) and thousand-grains weight (TGW). Based on
the polynomial curve of SR graph, the lethal dose 50% (LD50) value
was 86.12 Gy. However, the optimum dose range of carbon ion-beam irradiation
was between 40 and 60 Gy as these two doses recorded the highest SR, 63 and
67%, respectively. Furthermore, the shoulder dose in this study was 60 Gy since
SR decreased significantly at higher doses. M1 individuals
irradiated at 40 and 60 Gy had the best biological responses where significant
differences were found for SR, SL, RL, GRoR, SH, DTF and FR at these two doses
compared to the other doses. Further studies on M2 and M3 populations could help to identify potential individuals as well as to
understand the inheritance of each trait of interest from one generation to the
next.
Keywords:
Biological response; carbon-ion beam; mutation breeding; optimum dose; rice
ABSTRAK
Sinar
ion karbon telah berkembang sebagai mutagen fizikal baru untuk mewujudkan
kepelbagaian genetik dan penambahbaikan tanaman. Dalam kajian ini, biji benih
titisan piramid padi MR219-PL-5 telah didedahkan kepada pancaran sinar ion
karbon pada 10, 20, 40, 60, 80 dan 100 Gy. Ujian radiopekaan telah dijalankan
untuk mengenal pasti dos optimum pancaran sinar ion karbon berdasarkan dos maut
50% (LD50) menggunakan Teknik Sandwich
Blotter. Tindak balas biologi pancaran
sinar karbon ion juga diperhatikan bagi ciri-ciri seperti kadar percambahan
(GeR), kadar kemandirian (SR), kadar pertumbuhan (GRoR), panjang pucuk (SL),
panjang akar (RL), tinggi anak pokok (SH), bilangan hari berbunga (DTF), kadar
kesuburan (FR) dan berat seribu-bijian (TGW). Berdasarkan graf polinomial SR,
nilai dos maut 50% (LD50) adalah pada 86.12 Gy. Walau bagaimanapun,
julat dos optimum sinaran pancaran ion karbon dipilih pada dos antara 40 dan 60
Gy kerana kedua-dua dos ini masing-masing mencatatkan SR tertinggi, 63 dan 67%.
Selanjutnya, dos bahu dalam kajian ini adalah 60 Gy kerana SR menurun dengan
ketara pada dos yang lebih tinggi. Sejajar dengan hasil LD50,
individu M1 yang disinari pada 40 dan 60 Gy mempunyai tindak balas
biologi terbaik berdasarkan tindak balas biologi pada keturunan M1 dengan perbezaan yang signifikan didapati untuk SR, SL, RL, GRoR, SH, DTF dan
FR pada kedua-dua dos ini berbanding dengan dos-dos yang lain. Kajian lanjutan
tentang populasi M2 dan M3 dapat membantu mengenal pasti
individu mutan berpotensi dan memahami keterwarisan setiap ciri yang diingini
daripada satu generasi ke generasi berikutnya.
Kata
kunci: Alur ion karbon; biak baka mutasi; dos optimum; padi; tindak balas
biologi
RUJUKAN
Abe, T., Kazama, Y., Ichida, H.,
Hayashi, Y., Ryuto, H. & Fukunishi, N. 2007. Plant breeding using the ion
beam irradiation in RIKEN. In Proceedings
of the 18th International Conference on Cyclotrons and Their Applications
CYCLOTRONS 2007. Saitama, Japan. pp. 222-224.
Awan, M.A. & Bari, G. 1979.
Mutagenic effects of fast neutrons and gamma rays in rice. Nucleus 16(1/2): 33-38.
Department of Agriculture Malaysia
(DoA). 2018. Maklumat pertanian - aktiviti dan sumber.
http://www.doa.gov.my/index.php/pages/view/623. Accessed on 20 October 2020.
Gowthami, R., Vanniarajan, C.,
Souframanien, J. & Pillai, A.M. 2017. Comparison of radiosensitivity of two
rice (Oryza sativa L.) varieties to
gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding 8(3): 732-741.
Gregory, W.C. 1972. Manual on
mutation breeding. Journal of Nuclear
Energy 26(8): 443-444.
Hidema, J., Yamoto, M., Kumagai, T.,
Hase, K., Sakamoto, A. & Tanaka, A. 2003. Biological effects of carbon ion on
rice (Oryza sativa L.). Review-Japan Atomic Energy Research
Institute 2003-033: 85-87.
Hussein, S., Harun, A.R., Simoli,
J.M.A., Wahab, M.R.A., Salleh, S., Ahmad, F., Hoe, P.C.K., Rahman, S.A.A.,
Ahmad NAzrul, A.W., Nordin, L., Tanaka, A., Kiong, A.L.P., Yian, K.R., Yusop,
M.R., Ilyani, A., Kogeethavani, R., Hase, Y., Koike, A., Noorman Affendi, M.,
Kamaruzaman, R., Hassan, N.A., Shamsudin, N.A.A. & Hashim, N.M. 2020.
Mutation breeding of rice for sustainable agriculture in Malaysia. In Mutation Breeding of Rice for Sustainable
Agriculture Mutation Breeding Project Forum for Nuclear Cooperation in Asia
(FNCA). Takasaki Advanced Radiation Research Institute, Japan. pp. 30-58.
Ibrahim, R., Harun, A.R., Hussien,
S., Mat Zin, A., Othman, S., Mahmud, M., Yusof, M.R., Nahar, S.H.M.,
Kamaruddin, Z.S. & Ana Ling, P.K. 2013. Application of mutation techniques
and biotechnology for minimal water requirement and improvement of amylose
content in rice. In FNCA Mutation
Breeding Project. Takasaki Advanced Radiation Research Institute, Japan.
pp. 46-59.
Ikmal, A.M., Noraziyah, A.A.S.,
Ellina, Z.P.D., Tuan Nur Aqlili Riana, T.A., Amira, I., Wickneswari, R. &
Aishah, Z.S. 2020. Genotype-by-environment interaction and stability analysis
of qDTYs pyramided rice (Oryza sativa) lines under water-limited
environments. International Journal of
Agriculture and Biology 24(6): 1835-1844.
Ikmal, A.M. Nurasyikin, N., Tuan Nur
Aqlili Riana, T.A., Ellina, Z.P.D., Wickneswari, R. & Noraziyah, A.A.S.
2019. Drought yield QTL (qDTY) with consistent
effects on morphological and agronomical traits of two populations of new rice
(Oryza sativa) lines. Plants 8(6): 186.
Ikmal, A.M., Nurasyikin, Z., Kumar,
A. & Noraziyah, A.A.S. 2018. Evaluation of morpho-physiological traits of
MRQ74 pyramided lines with drought yield QTLs. Euphytica 214(6): 98.
Jones, H.E., West, H.M.,
Chamberlain, P.M., Parekh, N.R., Beresford, N.A. & Crout, N.M.J. 2004.
Effects of gamma irradiation on Holcus
lanatus (Yorkshire fog grass) and associated soil microorganisms. Journal of Environmental Radioactive 74(1-3): 57-71.
Kalimullah, M., Gaikwad, J.U.,
Thomas, S., Sarma, A. & Vidyasagar, P.B. 2003. Assessment of 1H
heavy ion irradiation induced effects in the development of rice (Oryza sativa L.) seedlings. Plant Science 165(3): 447-454.
Khadimi, A.A., Alhasnawi, A.N.,
Isahak, A., Ashraf, M.F., Mohamad, A., Yusoff, W.M.W. & Radziah, M.Z. 2016.
Gamma radiosensitivity study on MRQ74 and MR269, two elite varieties of rice (Oryza sativa L.). Life Science Journal 13(2): 86-91.
Kim, J.H., Baek, M.H., Chung, B.Y.,
Wi, S.G. & Kim, J.S. 2004. Alterations in the photosynthetic pigments and
antioxidant machineries of red pepper (Capsicum
annuum L.) seedlings from gamma irradiated seeds. Journal of Plant Biology 47(2): 314-321.
Ling, A.P.K., Ung, Y.C., Hussein,
S., Harun, A.R., Tanaka, A. & Yoshihiro, H. 2013. Morphological and
biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. Journal of Zhejiang University Science B 14(12): 1132-1143.
Long, S.P., Zhu, X.G., Naidu, S.L.
& Ort, D.R. 2006. Can improvement in photosynthesis increase crop yields. Plant Cell Environmental 29(3): 315-330.
Luo, J., Hu, P.S., Tang, S.Q., Jiao, G.A. & Shao, G.N. 2013. Mutation breeding project: Sub-project on composition or quality in rice China, achievement sub-project on composition or quality in rice (2007-2012), mutation breeding project, forum for Nuclear Cooperation in Asia (FNCA), FNCA/MEXT Technical Material, Japan. pp. 11-20. http://www.fnca.mext.go.jp/english/mb/rice/e_rice.html.
Magori, S., Tanaka, A. &
Kawaguchi, M. 2010. Induced mutation. In The Handbook of Plant
Mutation Screening, edited by Kahl, G. & Meksen, K. New York: John
Wiley & Sons. pp. 1-16.
Mamun, A.N.K., Azad, A.K., Kabir,
M.H., Roy, P.K., Islam, M.R., Jahan, M.T., Azam, M.A., Hakim, M.L. & Ahmed,
G. 2013. High yielding mutants with shorter life cycle selected in rice
irradiated with carbon ion beam. In Mutation
Breeding of Rice for Sustainable Agriculture Mutation Breeding Project Forum
for Nuclear Cooperation in Asia (FNCA). Takasaki Advanced Radiation
Research Institute, Japan. pp. 2-10.
Myhill, R.R. & Konzak, C.F.
1967. A new technique for culturing and measuring barley seedlings. Crop Science 7(3): 275-277.
Oladosu, Y., Rafii, M.Y., Abdullah,
N., Abdul Malek, M., Rahim, H.A., Hussin, G., Abdul Latif, M. & Kareem, I.
2014. Genetic variability and selection criteria in rice mutant lines as a
revealed by quantitative traits. Scientific
World Journal 2014: 190531.
Preuss, S.B. & Britt, A.B. 2003.
A DNA-damage induced cell cycle checkpoint in Arabidopsis. Genetics 164(1): 323-334.
Saweho, M.F., Purwanto, E. &
Yunus, A. 2019. The short-stemmed selection of M4 generation of Mentik Susu
rice mutants as irradiation result with 200 gray gamma rays. Earth and Environmental Science 250(1):
012034.
Shamsudin,
N.A.A., Swamy, B.P.M., Ratnam, W., Cruz, M.T.S., Sandhu, N., Raman, A.K. &
Kumar, A. 2016. Pyramiding of drought yield QTLs into a high-quality Malaysian
rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9(1): 1-13.
Sjahril,
R., Riadi, M., Rafiuddin, Sato, T., Toriyama, K., Abe, T. & Trisnawaty,
A.R. 2018. Effect of heavy ion beam irradiation on germination of local Toraja
rice seed (M1-M2) mutant generation. Conference Series: Earth and Environmental Science 157(1): 012046.
Tanaka, A., Nozawa, S., Hase, Y.,
Narumi, I., Ishikawa, H. & Koike, A. 2010. Ion beam irradiation with rice
seeds for the mutation breeding project of the forum for nuclear cooperation in
Asia (FNCA). In FNCA Mutation Breeding
Project Takasaki Advanced Radiation Research Institute, Japan. p. 61.
Tanaka, A., Kobayashi, Y., Hase, Y.
& Watanabe, H. 2002. Positional effect of cell inactivation on root gravitropism
using heavy ion microbeams. Journal of
Experimental Botany 53(369): 683-687.
Tanaka, A., Kawano, K. &
Yamaguchi, J. 1966. Photosynthesis, respiration and plant type of the tropical
rice plant. International Rice Research
Institute – Technology Bulletin 7: 45-46.
Ulukapi, K. & Nasircilar, A.G.
2018. Induced mutation: Creating genetic diversity in plants. In Genetic Diversity in Plant Species -
Characterization and Conservation, edited by El-Esawi, M.A. Intech Open.
pp. 1-15.
Vazquez-Tello, A., Uozumi, T.,
Hidaka, M., Kobayashi, Y. & Wanatabe, H. 2005. Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus,
protoplasts and cell suspensions of Lavatera
thuringiaca. Plant Cell Reproduction 16(1-2): 46-49.
Yamaguchi, H. 2013. Characteristics
of ion beams as mutagens for mutation breeding in rice and chrysanthemums -
Review. Japan Agriculture Research
Quarterly Journal 47(4): 339-346.
Yamaguchi, H. 2011. Mutational
Breeding with Ion and Gamma Rays. Japan: Chiba University Press.
Yamaguchi, H., Hase, Y., Tanaka, A.,
Shikazono, N., Degi, K., Shimizu, A. & Morishita, T. 2009. Mutagenic effect
of ion beam irradiation on rice. Breeding
Science 59(2): 169-177.
Yasmine, F., Ullah, M.A., Ahmad, F.,
Rahman, M.A. & Harun, A.R. 2019. Effect of chronic gamma radiation on three
rice varieties. Jurnal Sains Nuklear
Malaysia 31(1): 1-10.
Zheng, Y., Li, S., Huang, J., Fu,
H., Zhou, L., Furusawa, Y. & Shu, Q. 2020. Mutagenic effects of three ion
beams on rice and identification of heritable mutations by whole genome
sequencing. Plants 9(55): 551.
*Pengarang
untuk surat-menyurat; email: nora_aziz@ukm.edu.my
|