Sains Malaysiana 50(1)(2021): 151-160
http://dx.doi.org/10.17576/jsm-2021-5001-15
Low-Energy Separation Technique on
Purification of Unsaturated Fatty Acids of Palm Stearin using Methanol Crystallization
Method
(Teknik Pemisahan Bertenaga Rendah
bagi Penulenan Asid Lemak Tepu daripada Stearin Sawit Menggunakan Kaedah
Pengkristalan Metanol)
FATIMATUZZAHRAA
MOHD FADZEL, JUMAT SALIMON & DARFIZZI DERAWI*
Laboratory for
Biolubricant, Biofuels and Bioenergy, Department of Chemical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 10 Mei
2020/Diterima: 24 Jun 2020
ABSTRACT
This paper
discussed the development of a low-energy and cost-effective separation
technique of saturated fatty acids (SFAs) from Malaysian Palm Stearin to purify
the unsaturation level of its fatty acids. Unsaturated fatty acids (UFAs) pose
great benefits in nutritional value and also can be utilized as a raw material
in various food or non-food applications. A methanol crystallization separation
method was introduced by manipulating the storage temperature as well as the
mixture ratio of palm stearin fatty acids (PSFAs) and methanol as a solvent.
The separated compounds were characterized using Fourier-transform infrared
(FTIR) spectroscopy, proton (1H-NMR), and carbon (13C-NMR)
spectroscopy analysis techniques. The fatty acids composition for both UFAs and
SFAs were determined through gas chromatography (GC) analysis technique. The
highest separation yield was about 98% (wt.), using a mixture of PSFA:methanol;
1:9 (w/v) at the temperature of -20 °C. This method was successfully separated
and purified the UFAs by increasing the unsaturation level of fatty acids about
172% as the final iodine value was about 98 compared to the initial value was
at 36. The low-energy methanol crystallization separation method is a cheaper
method compared to the conventional high-energy fractional distillation process
and positively to be up scaled at industrial level.
Keywords: Fatty acids; low-energy separation; methanol
crystallization; palm stearin; separation technique
ABSTRAK
Kajian ini membincangkan pembangunan teknik pemisahan
bertenaga rendah dan efektif kos asid lemak tepu (SFAs) daripada stearin sawit
Malaysia untuk penulenan ketidaktepuan asid lemak stearin sawit. Asid lemak tak
tepu (UFAs) mempunyai kelebihan nilai khasiat dan juga boleh digunakan sebagai
bahan mentah dalam pelbagai aplikasi makanan dan bukan makanan. Suatu kaedah
pemisahan pengkristalan metanol diperkenalkan dengan memanipulasikan suhu
penyimpanan dan juga nisbah campuran asid lemak stearin sawit (PSFAs) dengan
metanol sebagai pelarut. Sebatian yang terpisah akan dicirikan menggunakan
teknik analisis spektroskopi transformasi Fourier inframerah (FTIR),
spektroskopi proton (1H-NMR) dan
karbon (13C-NMR). Komposisi asid lemak bagi kedua-dua UFAs dan SFAs
ditentukan menggunakan teknik analisis kromatografi
gas (GC). Hasil pemisahan tertinggi adalah 98% (wt.), menggunakan campuran
PSFA: metanol; 1:9 (w/v) pada suhu -20 °C. Kaedah ini telah berjaya
memisahkan dan menulenkan UFAs dengan meningkatkan tahap ketidaktepuan asid
lemak sebanyak 172% dengan nilai iodin akhir sebanyak 98 berbanding nilai awal
sebanyak 36. Kaedah pemisahan pengkristalan metanol bertenaga rendah adalah
lebih murah berbanding dengan proses pemisahan penyulingan berperingkat
bertenaga tinggi dan positif untuk ditingkatkan pada skala industri.
Kata kunci: Asid lemak; pemisahan bertenaga rendah;
pengkristalan metanol; stearin sawit, teknik pemisahan
RUJUKAN
Alam, A.F., Er, A.C. & Begum,
H. 2015. Malaysian oil palm industry: Prospect and problem. Journal of Food,
Agriculture & Environment 13(2): 143-148.
ASTM
D97-17b. 2016. Standard Test Method for
Pour Point of Petroleum Products. ASTM International, West Conshohocken,
PA.
ASTM
D2270-10. 2016. Standard Practice for
Calculating Viscosity Index from Kinematic Viscosity at 40 °C and
100 °C. ASTM International, West Conshohocken, PA.
ASTM
D92-05a. 2010. Standard Test Method for
Flash and Fire Points by Cleveland Open Cup Tester, ASTM International,
West Conshohocken, PA.
Azeman, N.H., Yusof, N.A. &
Othman, A.I. 2015. Detection of free fatty acid in crude palm oil. Asian
Journal of Chemistry 27(5): 1569-1573.
Buitimea-Cantúa, N.E.,
Salazar-García, M.G., Vidal-Quintanar, R.L., Serna-Saldívar, S.O.,
Ortega-Ramirez, R. & Buitimea-Cantúa, G.V. 2017. Formulation of zero-trans
crystalized fats produced from palm stearin and high oleic safflower oil
blends. Journal of Food Quality 2017: Article ID. 1253976.
Derawi, D. & Salimon, J. 2013. Palm olein based
biolubricant basesticks: Synthesis, characterization, tribological and
rheological analysis. The Malaysian
Journal of Analytical Sciences 17(1): 153-163.
Dian, N.L.H.M., Hamid, R.A.,
Kanagaratnam, S., Isa, W.R.A., Hassim, N.A.M., Ismail, N.H. & Sahri, M.M.
2017. Palm oil and palm kernel oil: Versatile ingredients for food
applications. Journal of Oil Palm Research 29(4): 487-511.
Eastwood, J., Swallow, A. &
Colmery, S. 2005. Selection criteria of esters in environmentally acceptable
hydraulic fluids NCFP I05-4.2. In Proceedings of the National
Conference on Fluid Power. Las Vegas, Nevada, USA. p. 107.
Fadzel, F.M., Salimon, J. &
Derawi, D. 2019. Biolubricant production from palm stearin fatty acids and
pentaerythritol. Malaysian Journal of Chemistry 21(2): 50-63.
Hashem, H.A., Shahat, M.,
El-Behairy, S.A & Sabry, A. 2017. Use of palm olein for improving the
quality properties and oxidative stability of some vegetable oils during frying
process. Middle East Journal Applied Sciences 7(1): 68-79.
Japir, A.A.W., Salimon, J.,
Derawi, D., Yahaya, B.H., Bahadi, M., Al-Shujaʼa, S. & Yusop, M.R.
2018. A highly efficient separation and physicochemical characteristics of
saturated fatty acids from crude palm oil fatty acids mixture using methanol
crystallisation method. Oilseeds & Fats Crops and Lipids 25(2):
1-8.
Jones, K.
2015. Zengshe Liu and George Kraus (eds): Green materials from plant oils. Chromatographia 78: 1315.
Jumaah, M.A., Yusoff, M.F.M.,
Salimon, J. & Bahadi, M. 2019. Separation of saturated and unsaturated
fatty acids of palm fatty acid distilled via low-temperature methanol
crystallization. Malaysian Journal of Chemistry 21(2): 8-16.
Karmakar, G., Ghosh, P. &
Sharma, B.K. 2017. Chemically modifying vegetable oils to prepare green
lubricants. Lubricants 5(4): 44.
Khor, Y.P., Hew, K.S., Abas, F.,
Lai, O.M., Cheong, L.Z., Nehdi, I.A., Sbihi, H.M., Gewik, M.M. & Tan, C.P.
2019. Oxidation and polymerization of triacylglycerols: In-depth investigations
towards the impact of heating profiles. Foods 8(10): 475.
Kumar, S.P.J., Prasad, S.R.,
Banerjee, R., Agarwal, D.K., Kulkarni, K.S. & Ramesh, K.V. 2017. Green
solvents and technologies for oil extraction from oilseeds. Chemistry
Central Journal 11(1): 1-9.
Laura, C.
2017. Your Global Fats and Oils
Connection. American Oil Chemist’s Society. Malaysian Palm Oil Board.
Malaysian
Standard-Palm Stearin Specification (2nd ed.):MS815:2007. Department of
Standards Malaysia.
Maluin, F.N., Hussein, M.Z. &
Idris, A.S. 2020. An overview of the oil palm industry: Challenges and some
emerging opportunities for nanotechnology development. Agronomy 10(3):
356.
Mutsaers, H.J.W. 2019. The
challenge of the oil palm: Using degraded land for its cultivation. Outlook
on Agriculture 48(3): 190-197.
Naghshineh, M., Ariffin, A.A.,
Ghazali, H.M., Mirhosseini, H. & Mohammad, A.S. 2010. Effect of
saturated/unsaturated fatty acid ratio on physicochemical properties of palm
olein-olive oil blend. Journal of the American Oil Chemists' Society 87(3):
255-262.
Nambiappan, B., Ismail, A.,
Hashim, N., Ismail, N., Shahari, D.N., Idris, N.A.N., Omar, N., Saleh, K.M.,
Hassan, N.A.M. & Kushairi, A. 2018. Malaysia: 100 years of resilient palm
oil economic performance. Journal of Oil Palm Research 30(1):
13-25.
Omar, Z., Hishamuddin, E., Sahri,
M.M., Fauzi, S.H.M., Dian, N.L.H.M., Ramli, M.R. & Rashid, N.A. 2015. Palm
oil crystallization: A review. Journal of Oil Palm Research 27(2):
97-106.
Pande, G., Akoh, C.C. & Lai,
O.M. 2012. Food uses of palm oil and its components. In Palm Oil: Production, Processing, Characterization
and Uses. Urbana Illinois: AOCS Press. pp. 561-586.
Pavia,
D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.A. 2009. Introduction to Spectroscopy. Belmont, CA, USA:
Brooks/Cole-Thomson Learning.
Pavia,
D.L., Lampman, G.M., Kriz, G.S. & Engel, R.G. 2005. Introduction to
Organic Laboratory Techniques: A Small Scale Approach. Belmont: Brooks/Cole-Thomson Learning.
Podchong, P., Tan, C.P., Sonwai,
S. & Rousseau, D. 2018. Composition and crystallization behavior of
solvent-fractionated palm stearin. International Journal of Food
Properties 21(1): 496-509.
Rao,
T.V.V.L.N., Rani, A.M.A., Awang, M., Baharom, M. & Uemura, Y. 2018. An
overview of research on biolubricants in Malaysia and Japan for tribological
applications. Jurnal Tribologi 18:
40-57.
Salih,
N., Salimon, J. & Yousif, E. 2013. The effect of chemical
structure on pour point, oxidative stability and tribological properties of
oleic acid triester derivatives. The
Malaysian Journal of Analytical Sciences 17(1): 119-128.
Salimon, J., Abdullah, B.M. &
Salih, N. 2011. Hydrolysis optimization and characterization study of preparing
fatty acids from Jatropha curcas seed
oil. Chemistry Central Journal 5(1): 67.
Salimon,
J., Said, M., Ramli, S. & Lazim, M.A. 2006. Oils and Fats Analysis. Bangi: Universiti Kebangsaan Malaysia.
Sue, T.T. & Pantzaris, T. 2009. Pocketbook
of Oil Palm Uses. Kuala Lumpur: Malaysian Palm Oil Board.
Tahari, M.N.A., Samidin, S.,
Yarmo, M.A., Salih, N. & Salimon, J. 2015. Synthesis and physicochemical
studies of suberates as biolubricant basetock. Malaysian Journal of
Analytical Sciences 19(1): 118-128.
Zhang, X., Li, L., Xie, H., Liang,
Z., Su, J., Liu, G. & Li, B. 2013. Comparative analysis of thermal
behavior, isothermal crystallization kinetics and polymorphism of palm oil
fractions. Molecules 18(1): 1036-1052.
*Pengarang untuk
surat-menyurat; email: darfizzi@ukm.edu.my
|