Sains Malaysiana 50(1)(2021): 151-160

http://dx.doi.org/10.17576/jsm-2021-5001-15

 

Low-Energy Separation Technique on Purification of Unsaturated Fatty Acids of Palm Stearin using Methanol Crystallization Method

(Teknik Pemisahan Bertenaga Rendah bagi Penulenan Asid Lemak Tepu daripada Stearin Sawit Menggunakan Kaedah Pengkristalan Metanol)

 

FATIMATUZZAHRAA MOHD FADZEL, JUMAT SALIMON & DARFIZZI DERAWI*

 

Laboratory for Biolubricant, Biofuels and Bioenergy, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 10 Mei 2020/Diterima: 24 Jun 2020

 

ABSTRACT

This paper discussed the development of a low-energy and cost-effective separation technique of saturated fatty acids (SFAs) from Malaysian Palm Stearin to purify the unsaturation level of its fatty acids. Unsaturated fatty acids (UFAs) pose great benefits in nutritional value and also can be utilized as a raw material in various food or non-food applications. A methanol crystallization separation method was introduced by manipulating the storage temperature as well as the mixture ratio of palm stearin fatty acids (PSFAs) and methanol as a solvent. The separated compounds were characterized using Fourier-transform infrared (FTIR) spectroscopy, proton (1H-NMR), and carbon (13C-NMR) spectroscopy analysis techniques. The fatty acids composition for both UFAs and SFAs were determined through gas chromatography (GC) analysis technique. The highest separation yield was about 98% (wt.), using a mixture of PSFA:methanol; 1:9 (w/v) at the temperature of -20 °C. This method was successfully separated and purified the UFAs by increasing the unsaturation level of fatty acids about 172% as the final iodine value was about 98 compared to the initial value was at 36. The low-energy methanol crystallization separation method is a cheaper method compared to the conventional high-energy fractional distillation process and positively to be up scaled at industrial level.

 

Keywords: Fatty acids; low-energy separation; methanol crystallization; palm stearin; separation technique

 

ABSTRAK

Kajian ini membincangkan pembangunan teknik pemisahan bertenaga rendah dan efektif kos asid lemak tepu (SFAs) daripada stearin sawit Malaysia untuk penulenan ketidaktepuan asid lemak stearin sawit. Asid lemak tak tepu (UFAs) mempunyai kelebihan nilai khasiat dan juga boleh digunakan sebagai bahan mentah dalam pelbagai aplikasi makanan dan bukan makanan. Suatu kaedah pemisahan pengkristalan metanol diperkenalkan dengan memanipulasikan suhu penyimpanan dan juga nisbah campuran asid lemak stearin sawit (PSFAs) dengan metanol sebagai pelarut. Sebatian yang terpisah akan dicirikan menggunakan teknik analisis spektroskopi transformasi Fourier inframerah (FTIR), spektroskopi proton (1H-NMR) dan karbon (13C-NMR). Komposisi asid lemak bagi kedua-dua UFAs dan SFAs ditentukan menggunakan teknik analisis kromatografi gas (GC). Hasil pemisahan tertinggi adalah 98% (wt.), menggunakan campuran PSFA: metanol; 1:9 (w/v) pada suhu -20 °C. Kaedah ini telah berjaya memisahkan dan menulenkan UFAs dengan meningkatkan tahap ketidaktepuan asid lemak sebanyak 172% dengan nilai iodin akhir sebanyak 98 berbanding nilai awal sebanyak 36. Kaedah pemisahan pengkristalan metanol bertenaga rendah adalah lebih murah berbanding dengan proses pemisahan penyulingan berperingkat bertenaga tinggi dan positif untuk ditingkatkan pada skala industri.

 

Kata kunci: Asid lemak; pemisahan bertenaga rendah; pengkristalan metanol; stearin sawit, teknik pemisahan

 

RUJUKAN

Alam, A.F., Er, A.C. & Begum, H. 2015. Malaysian oil palm industry: Prospect and problem. Journal of Food, Agriculture & Environment 13(2): 143-148.

ASTM D97-17b. 2016. Standard Test Method for Pour Point of Petroleum Products. ASTM International, West Conshohocken, PA.

ASTM D2270-10. 2016. Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 °C and 100 °C. ASTM International, West Conshohocken, PA.

ASTM D92-05a. 2010. Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester, ASTM International, West Conshohocken, PA.

Azeman, N.H., Yusof, N.A. & Othman, A.I. 2015. Detection of free fatty acid in crude palm oil. Asian Journal of Chemistry 27(5): 1569-1573.

Buitimea-Cantúa, N.E., Salazar-García, M.G., Vidal-Quintanar, R.L., Serna-Saldívar, S.O., Ortega-Ramirez, R. & Buitimea-Cantúa, G.V. 2017. Formulation of zero-trans crystalized fats produced from palm stearin and high oleic safflower oil blends. Journal of Food Quality 2017: Article ID. 1253976.

Derawi, D. & Salimon, J. 2013. Palm olein based biolubricant basesticks: Synthesis, characterization, tribological and rheological analysis. The Malaysian Journal of Analytical Sciences 17(1): 153-163.

Dian, N.L.H.M., Hamid, R.A., Kanagaratnam, S., Isa, W.R.A., Hassim, N.A.M., Ismail, N.H. & Sahri, M.M. 2017. Palm oil and palm kernel oil: Versatile ingredients for food applications. Journal of Oil Palm Research 29(4): 487-511.

Eastwood, J., Swallow, A. & Colmery, S. 2005. Selection criteria of esters in environmentally acceptable hydraulic fluids NCFP I05-4.2. In Proceedings of the National Conference on Fluid Power. Las Vegas, Nevada, USA. p. 107.

Fadzel, F.M., Salimon, J. & Derawi, D. 2019. Biolubricant production from palm stearin fatty acids and pentaerythritol. Malaysian Journal of Chemistry 21(2): 50-63.

Hashem, H.A., Shahat, M., El-Behairy, S.A & Sabry, A. 2017. Use of palm olein for improving the quality properties and oxidative stability of some vegetable oils during frying process. Middle East Journal Applied Sciences 7(1): 68-79.

Japir, A.A.W., Salimon, J., Derawi, D., Yahaya, B.H., Bahadi, M., Al-Shujaʼa, S. & Yusop, M.R. 2018. A highly efficient separation and physicochemical characteristics of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. Oilseeds & Fats Crops and Lipids 25(2): 1-8.

Jones, K. 2015. Zengshe Liu and George Kraus (eds): Green materials from plant oils. Chromatographia 78: 1315.

Jumaah, M.A., Yusoff, M.F.M., Salimon, J. & Bahadi, M. 2019. Separation of saturated and unsaturated fatty acids of palm fatty acid distilled via low-temperature methanol crystallization. Malaysian Journal of Chemistry 21(2): 8-16.

Karmakar, G., Ghosh, P. & Sharma, B.K. 2017. Chemically modifying vegetable oils to prepare green lubricants. Lubricants 5(4): 44.

Khor, Y.P., Hew, K.S., Abas, F., Lai, O.M., Cheong, L.Z., Nehdi, I.A., Sbihi, H.M., Gewik, M.M. & Tan, C.P. 2019. Oxidation and polymerization of triacylglycerols: In-depth investigations towards the impact of heating profiles. Foods 8(10): 475.

Kumar, S.P.J., Prasad, S.R., Banerjee, R., Agarwal, D.K., Kulkarni, K.S. & Ramesh, K.V. 2017. Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal 11(1): 1-9.

Laura, C. 2017. Your Global Fats and Oils Connection. American Oil Chemist’s Society. Malaysian Palm Oil Board.

Malaysian Standard-Palm Stearin Specification (2nd ed.):MS815:2007. Department of Standards Malaysia.

Maluin, F.N., Hussein, M.Z. & Idris, A.S. 2020. An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy 10(3): 356.

Mutsaers, H.J.W. 2019. The challenge of the oil palm: Using degraded land for its cultivation. Outlook on Agriculture 48(3): 190-197.

Naghshineh, M., Ariffin, A.A., Ghazali, H.M., Mirhosseini, H. & Mohammad, A.S. 2010. Effect of saturated/unsaturated fatty acid ratio on physicochemical properties of palm olein-olive oil blend. Journal of the American Oil Chemists' Society 87(3): 255-262.

Nambiappan, B., Ismail, A., Hashim, N., Ismail, N., Shahari, D.N., Idris, N.A.N., Omar, N., Saleh, K.M., Hassan, N.A.M. & Kushairi, A. 2018. Malaysia: 100 years of resilient palm oil economic performance. Journal of Oil Palm Research 30(1): 13-25.

Omar, Z., Hishamuddin, E., Sahri, M.M., Fauzi, S.H.M., Dian, N.L.H.M., Ramli, M.R. & Rashid, N.A. 2015. Palm oil crystallization: A review. Journal of Oil Palm Research 27(2): 97-106.

Pande, G., Akoh, C.C. & Lai, O.M. 2012. Food uses of palm oil and its components. In Palm Oil: Production, Processing, Characterization and Uses. Urbana Illinois: AOCS Press. pp. 561-586.

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.A. 2009. Introduction to Spectroscopy. Belmont, CA, USA: Brooks/Cole-Thomson Learning.

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Engel, R.G. 2005. Introduction to Organic Laboratory Techniques: A Small Scale Approach. Belmont: Brooks/Cole-Thomson Learning.

Podchong, P., Tan, C.P., Sonwai, S. & Rousseau, D. 2018. Composition and crystallization behavior of solvent-fractionated palm stearin. International Journal of Food Properties 21(1): 496-509.

Rao, T.V.V.L.N., Rani, A.M.A., Awang, M., Baharom, M. & Uemura, Y. 2018. An overview of research on biolubricants in Malaysia and Japan for tribological applications. Jurnal Tribologi 18: 40-57.

Salih, N., Salimon, J. & Yousif, E. 2013. The effect of chemical structure on pour point, oxidative stability and tribological properties of oleic acid triester derivatives. The Malaysian Journal of Analytical Sciences 17(1): 119-128.

Salimon, J., Abdullah, B.M. & Salih, N. 2011. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chemistry Central Journal 5(1): 67.

Salimon, J., Said, M., Ramli, S. & Lazim, M.A. 2006. Oils and Fats Analysis. Bangi: Universiti Kebangsaan Malaysia.

Sue, T.T. & Pantzaris, T. 2009. Pocketbook of Oil Palm Uses. Kuala Lumpur: Malaysian Palm Oil Board.

Tahari, M.N.A., Samidin, S., Yarmo, M.A., Salih, N. & Salimon, J. 2015. Synthesis and physicochemical studies of suberates as biolubricant basetock. Malaysian Journal of Analytical Sciences 19(1): 118-128.

Zhang, X., Li, L., Xie, H., Liang, Z., Su, J., Liu, G. & Li, B. 2013. Comparative analysis of thermal behavior, isothermal crystallization kinetics and polymorphism of palm oil fractions. Molecules 18(1): 1036-1052.

 

*Pengarang untuk surat-menyurat; email: darfizzi@ukm.edu.my

   

sebelumnya