| Sains Malaysiana 50(1)(2021): 261-278
          
         http://dx.doi.org/10.17576/jsm-2021-5001-25
            
           
             
           A Bayesian Approach for Estimation of Coefficients of
            Variation of Normal Distributions
            
           (Pendekatan Bayesian untuk Anggaran Pekali Variasi Taburan Normal)
            
           
             
           WARISA
            THANGJAI1, SA-AAT NIWITPONG2* & SUPARAT
            NIWITPONG2
  
           
             
           1Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
            
           
             
           2Department of Applied Statistics, Faculty of
            Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok
            10800, Thailand
            
           
             
           Diserahkan: 26 Oktober 2019/Diterima: 30 Jun
            2020
            
           
             
           ABSTRACT
            
           The coefficient of variation is widely used
            as a measure of data precision. Confidence intervals for a single coefficient
            of variation when the data follow a normal distribution that is symmetrical and
            the difference between the coefficients of variation of two normal populations
            are considered in this paper. First, the confidence intervals for the coefficient
            of variation of a normal distribution are obtained with adjusted generalized
            confidence interval (adjusted GCI), computational, Bayesian, and two adjusted
            Bayesian approaches. These approaches are compared with existing ones comprising two approximately unbiased estimators,
            the method of variance estimates recovery (MOVER) and generalized confidence
            interval (GCI). Second, the confidence intervals for the difference between the
            coefficients of variation of two normal distributions are proposed using the
            same approaches, the performances of which are then compared with the existing
            approaches. The highest posterior density interval was used to estimate the
            Bayesian confidence interval. Monte Carlo simulation was used to assess the
            performance of the confidence intervals. The results of the simulation studies
            demonstrate that the Bayesian and two adjusted Bayesian approaches were more
            accurate and better than the others in terms of coverage probabilities and
            average lengths in both scenarios. Finally, the performances of all of the
            approaches for both scenarios are illustrated via an empirical study with two
            real-data examples.
  
           
             
           Keywords: Bayesian approach; coefficient of
            variation; difference; normal distribution; simulation
            
           
             
           ABSTRAK
            
           Pekali variasi digunakan
            secara meluas sebagai ukuran ketepatan data. Selang kepercayaan untuk pekali
            variasi tunggal apabila data mengikuti taburan normal yang simetris dan
            perbezaan antara pekali variasi dua populasi normal dipertimbangkan dalam
            makalah ini. Pertama, selang kepercayaan untuk pekali variasi sebaran normal
            diperoleh dengan selang kepercayaan umum yang disesuaikan (GCI disesuaikan),
            pengiraan, Bayesian dan dua pendekatan Bayesian yang disesuaikan. Pendekatan
            ini dibandingkan dengan pendekatan sedia ada yang terdiri daripada dua
            penganggar yang tidak berat sebelah, kaedah pemulihan anggaran varians (MOVER)
            dan selang kepercayaan umum (GCI). Seterusnya, selang kepercayaan untuk
            perbezaan antara koefisien variasi dua taburan normal diusulkan menggunakan
            pendekatan yang sama, persembahannya kemudian dibandingkan dengan pendekatan
            yang ada. Selang ketumpatan posterior tertinggi digunakan untuk menganggar
            selang keyakinan Bayesian. Simulasi Monte Carlo digunakan untuk menilai
            prestasi selang kepercayaan. Hasil kajian simulasi menunjukkan bahawa
            pendekatan Bayesian dan dua Bayesian yang disesuaikan lebih tepat dan lebih
            baik daripada yang lain daripada segi kebarangkalian liputan dan panjang purata
            dalam kedua-dua senario tersebut. Akhirnya, prestasi semua pendekatan untuk
            kedua-dua senario digambarkan melalui kajian empirik dengan dua contoh data
            sebenar.
                
           
             
           Kata kunci: Pendekatan
            Bayesian; pekali variasi; perbezaan; simulasi; taburan normal
  
 
             
           RUJUKAN
            
           Bayes,
            T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical
              Transactions of the Royal Society of London 53: 370-418.
  
           Bernat, D.H., Lazovich,
            D., Forster, J.L., Oakes, J.M. & Chen, V. 2009. Area-level variation in
            adolescent smoking. Preventing Chronic Disease 6(2): 1-8.
  
           Camara, V.A.R. 2012. New approximate
            Bayesian confidence intervals for the coefficient of variation of a Gaussian distribution. Journal of
              Modern Applied Statistical Methods 11(1): 158-166.
  
           Camara, V.A.R. 2003. Approximate Bayesian
            confidence intervals for the variance of a Gaussian distribution. Journal of
              Modern Applied Statistical Methods 2(2): 350-358.
  
           Chow, P.K., Wan, C.P., Yip, S.P. Tsim,
            Y.L., Tsang, K.S., Li, K.F., Wong, H.F., Leung, K.K. & Lee, W.C. 1998. Haematology & Serology. Hong Kong Medical
            Technology Association Quality Assurance Programme Biennial Report 1997 & 98: 15-27.
  
 Donner,
            A. & Zou, G.Y. 2012.
            Closed-form confidence intervals for functions of the normal mean and standard
            deviation. Statistical Methods in
              Medical Research 21(4):
                347-359.
  
           Doornbos, R. & Dijkstra, J.B. 1983. A multi sample test for the
            equality of coefficients of variation in normal populations. Communications
              in Statistics-Simulation and Computation 12(2): 147-158.
            
           Fung, W.K. & Tsang, T.S. 1998. A simulation study
            comparing tests for the equality of coefficients of variation. Statistics in
              Medicine 17(17): 2003-2014.
  
           Gelman, A., Carlin, J.B., Stern, H.S., Dunson,
            D.B., Vehtari, A. & Rubin, D.B. 2013. Bayesian
              Data Analysis. Florida: Chapman and Hall/CRC. pp. 29-62.
  
           Gül, H.H., Gökpinar, E., Ebegil, M., Özdemir, Y.A. & Gökpinar, F. 2019. A new test for the homogeneity of inverse
            Gaussian scale parameters based on computational approach test. Sains Malaysiana 48(8): 1777-1785.
  
 Gulhar, M., Kibria, B.M.G., Albatineh, A.N. & Ahmed, N.U. 2012. A comparison of some confidence intervals for estimating the
            population coefficient of variation: A simulation study. Statistics and
              Operations Research Transactions 36(1): 45-68.
            
           Harvey,
            J. & van der Merwe, A.J. 2012. Bayesian confidence intervals for means and
            variances of lognormal and bivariate lognormal distributions. Journal of
              Statistical Planning and Inference 142(6): 1294-1309.
  
           Harvey,
            J., Groenewald, P.C.N. & van der Merwe, A.J. 2010. Bayesian Confidence
              Intervals for the Mean of a Lognormal Distribution: A Comparison with the MOVER
              and Generalized Confidence Interval Procedure. Technical Report No. 408.
            Department of Statistics and Actuarial Science, University of the Free State.
            pp. 1-28.
  
           Kang,
            C.W., Lee, M.S., Seong, Y.J. & Hawkins, D.M.
            2007. A control chart for the coefficient of variation. Journal of Quality
              Technology 39(2): 151-158.
  
           Krishnamoorthy, K., Mathew, T. & Ramachandran, G. 2006.
            Generalized P-values and confidence intervals: A novel approach for analyzing lognormally distributed exposure data. Journal of
              Occupational and Environmental Hygiene 3(11): 642-650.
  
           Lim,
            S.L., Yeong, W.C., Khoo,
            M.B.C. & Chew, X.Y. 2018. A comparison of the variable sampling interval
            (VSI) and variable sample size (VSS) coefficient of variation charts. Proceedings
              of the 4th World Congress on Mechanical, Chemical, and Material Engineering 129:
            1-8.
  
           Liu,
            S., Qin, G., Wang, B. & Zhou, H. 2015. Confidence interval
              estimation for coefficient of variation. Georgia State University, M.Sc.
              Thesis (Unpublished).
  
 Mahmoudvand, R. & Hassani, H. 2009. Two new confidence intervals for
            the coefficient of variation in a normal distribution. Journal of Applied
              Statistics 36(4): 429-442.
            
           McKay, A.T. 1932. Distribution of the
            coefficient of variation and the extended ‘t’ distribution. Journal of Royal
              Statistics Society 95(4): 695-698.
  
 Menzefricke, U. 2010. Control charts for the variance
            and coefficient of variation based on their predictive distribution. Communications
              in Statistics-Theory and Methods 39(16): 2930-2941.
  
           Niwitpong, S. 2015. Confidence intervals for the
            difference between coefficients of variation of normal distribution with
            bounded parameters. Far East Journal of Mathematical Sciences 98(5):
            649-663.
  
           Rao, K.A. & D’Cunha, J.G.
            2016. Bayesian inference for median of the lognormal distribution. Journal
              of Modern Applied Statistical Methods 15(2): 526-535.
  
           Saelee,
            V., Kornpetpanee, S. & Wongkasem,
            P. 2013. An examination of the variability of agricultural production using a
            new approximate confidence interval for the coefficient of variation. ScienceAsia 39: 440-443.
  
           Singh,
            M. 1993. Behavior of sample coefficient of variation drawn from several
            distributions. Sankya 55(1): 65-76.
  
           Taye, G. & Njuho,
            P. 2008. Monitoring field variability using confidence interval for coefficient
            of variation. Communications in Statistics-Theory and Methods 37(6):
            831-846.
  
           Thangjai, W., Niwitpong, S.
  & Niwitpong, S. 2020. Adjusted generalized confidence intervals for the common
            coefficient of variation of several normal populations. Communications
              in Statistics-Simulation and Computation 49(1): 194-206.
  
 Thangjai, W., Niwitpong, S.
  & Niwitpong, S. 2019. Simultaneous confidence intervals
    for all differences of coefficients of variation of log-normal distributions. Hacettepe Journal of Mathematics and Statistics 48(5): 1505-1521. 
  
 Tian, L. 2005. Inferences on the common coefficient
            of variation. Statistics in Medicine 24(14): 2213-2220.
  
 Tongmol, N., Srisodaphol,
            W. & Boonyued, A. 2016. A Bayesian approach to
            the one-way ANOVA under unequal variance. Sains Malaysiana 45(10): 1565-1572.
  
           van Zyl, R. & van der Merwe, A.J. 2017. A Bayesian
            control chart for a common coefficient of variation. Communications in
              Statistics-Theory and Methods 46(12): 5795-5811.
  
           Vangel, M.G. 1996.
            Confidence intervals for a normal coefficient of variation. Journal American
              Statistical Association 50(1): 21-26.
  
 Verrill,
            S. & Johnson, R.A. 2007. Confidence bounds and hypothesis tests for normal
              distribution coefficients of variation. Communications in Statistics-Theory
                and Methods 36(12): 2187-2206.
  
 Weerahandi,
            S. 1995. Exact Statistical Methods for Data Analysis. New York: Springer-Verlag. pp. 57-58.
  
           Wong,
            A.C.M. & Wu, J. 2002. Small sample asymptotic inference for the coefficient of
              variation: Normal and nonnormal models. Journal of
                Statistical Planning and Inference 104(1): 73-82.
  
 Zhang,
            J., Li, Z. & Wang, Z. 2018. Control chart for monitoring the coefficient of
            variation with an exponentially weighted moving average procedure. Quality
              and Reliability Engineering International 34(2): 188-202.
  
           Zou,
            G.Y., Huo, C.Y. & Taleban,
            J. 2009. Simple confidence intervals for lognormal means and their differences
            with environmental applications. Environmetrics 20(2): 172-180.
  
           
             
           *Pengarang untuk surat-menyurat; email:
            sa-aat.n@sci.kmutnb.ac.th
  
 
             
                
          
           
 |