Sains
Malaysiana 50(1)(2021): 73-83
http://dx.doi.org/10.17576/jsm-2021-5001-08
Harvesting Marine Microalgae Nannochloropsis sp. using Dissolved Air Flotation (DAF) Technique
(Penuaian Mikroalga Marin Nannochloropsis sp. menggunakan Teknik Pengapungan Udara Terlarut
(DAF))
NURAFIFAH FUAD, ROZITA OMAR*, SURYANI
KAMARUDIN, RAZIF HARUN, A. IDRIS & W.A.K.G WAN AZLINA
Department of Chemical and Environmental
Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan:
22 Mac 2020/Diterima: 20 Jun 2020
ABSTRACT
The
production of high-value bioproducts from microalgae biomass has been widely
investigated. However, their production is hindered by the expensive harvesting
process. To date, flocculation followed by DAF process has been accepted as one
of the affordable harvesting approaches. In this study, the use of DAF
technique was attempted to harvest marine microalgae Nannochloropsis sp. Batch DAF
harvesting was carried out using fabricated DAF unit equipped with several
compartments including separation column, product collecting vessel and rotary
skimmer. Tannin-based biopolymer flocculant, AFlok-BP1 at pH 5 with a
concentration of 160 mg/L was used to facilitate the flocculation of particles.
The effects of different saturator pressure at 1.8, 2, and 2.2 bar were then
evaluated at a constant volume of 6 L microalgae culture. The effects of
different microalgae culture volumes (6, 8 and 10 L) were also evaluated at a
fixed saturator pressure of 2.2 bar. The highest pressure at 2.2 bar yielded
the best result with the highest total solid of 3.19 ± 0.01% and a maximum
yield of 1.70 ± 0.05 g/g (wet basis). The microalgae concentration was the
lowest (0.027 g/L) when 6 L of culture volume was used. However, the values
were significantly higher when the culture volume was increased to 8 and 10 L
to approximately 0.035 and 0.050 g/L, respectively. As a conclusion, the study
provided evidence for the feasibility of DAF technique in harvesting marine
microalgae Nannochloropsis sp.
Keywords:
Bubbles; dewatering; flotation; microalgae; saturator
ABSTRAK
Penghasilan
produk biologi yang bernilai tinggi daripada biojisim mikroalga telah dikaji dengan
meluas. Namun begitu, penghasilan produk biologi ini terhalang oleh proses penuaian
yang mahal. Sehingga hari ini, kaedah flokulasi diikuti dengan proses
pengapungan udara terlarut (DAF) telah diterima baik sebagai satu kaedah
penuaian yang berpatutan. Dalam kajian ini, kaedah DAF telah diguna pakai untuk
menuai mikroalga marin Nannochloropsis sp. Penuaian DAF secara kelompok telah dijalankan menggunakan unit DAF yang
telah difabrikasi dan dilengkapkan dengan beberapa bahagian termasuklah turus
pemisah, vesel pengumpulan produk dan pemeres putar. Flokulan biopolimer
berasaskan tanin, AFlok-BP1 telah digunakan pada nilai pH 5 dengan kepekatan
160 mg/L untuk memudahkan proses flokulasi zarah-zarah. Kesan tekanan
penyerapan yang berbeza pada 1.8, 2.0 dan 2.2 bar kemudiannya dinilai pada isi
padu tetap kultur mikroalga iaitu 6 L. Kesan isi padu mikroalga kultur yang
berbeza (6, 8 dan 10 L) juga dinilai menggunakan tekanan penyerapan yang tetap
iaitu 2.2 bar. Tekanan paling tinggi pada 2.2 bar memberikan keputusan terbaik
dengan jumlah pepejal tertinggi, 3.19 ± 0.01% dan hasil maksimum, 1.70 ± 0.05
g/g (asas basah). Kepekatan mikroalga adalah paling rendah (0.027 g/L) apabila
isi padu kultur 6 L digunakan. Walau bagaimanapun, nilai tersebut
meningkat secara signifikan dengan penambahan isi padu kultur dari 8 dan 10 L
dengan anggaran sebanyak 0.035 dan 0.050 g/L. Kesimpulannya, kajian ini telah
membuktikan keupayaan teknik DAF untuk menuai mikroalga marin Nannochloropsis sp.
Kata
kunci: Buih; mikroalga; penyahairan; pengapungan; penyerapan
RUJUKAN
Barros, A.I., Goncalves, A.L., Simoes, M. & Pires, J.C.M.
2015. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews 41: 1489-1500.
Besson, A. & Guiraud, P. 2013. High-pH-induced
flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresource
Technology 147: 464-470.
Dassey, A. & Theegala, C. 2012. Optimizing the air
dissolution parameters in an unpacked dissolved air flotation system. Water 4: 1-11.
Edzwald, J.K. 2010. Dissolved air flotation and me. Water Research 44: 2077-2106.
Fuad, N., Omar, R., Kamarudin, S., Harun, R., Idris, A. &
Wan Azlina, W.A.K.G. 2018. Effective use of tannin based natural biopolymer,
AFlok-BP1 to harvest marine microalgae Nannochloropsis sp. Journal of Environmental Chemical Engineering 6: 4318-4328.
Gerardo, M.L., Van, D.H.S., Vervaeren, H., Coward, T. &
Skill, S.C. 2015. Harvesting of microalgae within a biorefinery approach: A
review of the developments and case studies from pilot-plants. Algal Research 11: 248-262.
Gulden, S.J., Riedele, C., Kopf, M.H. & Nirschl, H. 2020.
Potential of flotation as alternative separation process in biotechnology with
focus on cost and energy efficiency. Chemical Engineering Science 218(8): 115117.
Han, M., Kim, T. & Kim, J. 2007. Effects of floc and
bubble size on the efficiency of the dissolved air flotation (DAF) process. Water Science and Technology 56:
109-115.
Harun, R., Singh, M., Forde, G.M. & Danquah, M.K. 2010.
Bioprocess engineering of microalgae to produce a variety of consumer product. Renewable and Sustainable Energy Reviews 14:
1037-1047.
Henderson, R.K., Parsons, S.A. & Jefferson, B. 2008.
Successful removal of algae through the control of zeta potential. Separation Science and Technology 43:
1653-1666.
Kim, T., Park, H. & Han, M. 2017. Development of algae
removal method based on positively charged bubbles. KSCE Journal of Civil Engineering 7(21): 2567-2572.
Kim, M.S. & Kwak, D.H. 2020. Auto/bio-flocculation
conditions to separate algal particles without chemical coagulants for
flotation and sedimentation processes. Separation Science and Technology 55(6): 1185-1196.
Kwon, H., Lu, M., Lee, E.Y. & Lee, J. 2014. Harvesting of
microalgae using flocculation combined with dissolved air flotation. Biotechnology and Bioprocess Engineering 19: 143-149.
Laamanen, C.A., Ross, G.M. & Scott, J.A. 2016. Flotation
harvesting of microalgae. Renewable and
Sustainable Energy Reviews 58: 75-86.
Leite, L.D.S., Santos, P.R.D. & Daniel, L.A. 2019.
Microalgae harvesting from wastewater by pH modulation and flotation: Assessing
and optimizing operational parameters. Journal of Environmental Management 254:
109825.
Liu, J., Song, Y. & Qiu, W. 2017. Oleaginous microalgae Nannochloropsis as a new model for biofuel production: Review & analysis. Renewable and Sustainable Energy Reviews 72: 154-162.
Lin, Z., Kuang, Y.L. & Leng, Y.W. 2011. Harvesting
microalgae biomass by instant dissolved air flotation at batch scale. Advanced Materials Research 236-238:
146-150.
Ndikubwimana, T., Chang, J., Xiao, Z., Shao, W., Zeng, X.,
Ng, I.S. & Lu, Y. 2016. Flotation: A promising microalgae harvesting and dewatering
technology for biofuels production. Biotechnology
Journal 11: 315-326.
Niaghi, M., Mahdavi, M.A. & Gheshlaghi, R. 2015.
Optimization of dissolved air flotation technique in harvesting microalgae from
treated wastewater without flocculants addition. Journal of Renewable and Sustainable Energy 7: 1-20.
Omar, R., Idris, A., Harun, R., Kamarudin, S., Wan Azlina,
W.A.K.G., Kamal, S.M., Biak, D.R.A. & Fuad, N. 2017. Comparison of lipid
quality of Nannochloropsis sp. flocculated via autoflocculation, AFlok-BP1 and Alum. 5th International Symposium on Applied
Engineering and Sciences (SAES2017), Universiti Putra Malaysia, Serdang,
Selangor, 14th -15th November 2017.
Sharma, K.K., Garg, S., Li, Y., Malekizadeh, A. & Schenk,
P.M. 2013. Critical analysis of current microalgae dewatering techniques. Biofuels 4: 397-407.
Wiley, P.E., Brenneman, K.J. & Jacobson, A.E. 2009.
Improved algal harvesting using suspended air flotation. Water Environment Research 81: 702-708.
Zhang, X., Hewson, J.C., Amendola, P., Reynoso, M.,
Sommerfeld, M., Chen, Y. & Hu, Q. 2014. Critical evaluation and modeling of
algal harvesting using dissolved air flotation. Biotechnology and Bioengineering 111: 2477-2485.
Zhang, W.H., Zhang, J., Zhao, B. & Zhu, P. 2015.
Microbubble size distribution measurement in a DAF system. Industrial
& Engineering Chemistry Research 54: 5179-5183.
Zhang, X., Wang, L., Sommerfeld, M. & Hu, Q. 2016.
Harvesting microalgal biomass using magnesium coagulation-dissolved air
flotation. Biomass and Bioenergy 93:
43-49.
Zhang, H., Lin, Z., Tan, D., Liu, C., Kuang, Y. & Li, Z.
2017. A novel method to harvest Chlorella sp. by co-flocculation/air flotation. Biotechnology Letters 39: 79-84.
*Pengarang untuk surat-menyurat; email: rozitaom@upm.edu.my
|