Sains Malaysiana 50(6)(2021): 1815-1825

http://doi.org/10.17576/jsm-2021-5006-26

 

 A Bibliometric Analysis of COVID-19 Research in Malaysia using Latent Dirichlet Allocation

(Suatu Analisis Bibliometrik Kajian COVID-19 di Malaysia menggunakan Agihan Dirichlet Terpendam)

 

ZAMIRA HASANAH ZAMZURI*

 

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diterima: 29 Januari 2021/Diserahkan: 28 April 2021

 

ABSTRACT

Coronavirus COVID-19 shocking the whole world due to its highly contagious characteristics implicating not only public health, but also economy and social life. Since the effects are momentous, plenty of research have been conducted and still ongoing in order to study and to learn more about this virus and how it changing our daily life. In this paper, we explore 134 articles published in 2020 related to COVID-19 and narrowing the scope of study to Malaysia. An alternative route was taken by employing Latent Dirichlet Allocation (LDA) to identify underlying themes or topics in these publications. Two separate analyses were conducted, one is to the paper’s titles and another one to the journal’s names. The findings identified three topics for paper’s titles data are clinical study, impact of COVID-19 on various fields and Movement Control Order (MCO). The last topic shows the locality criterion in the studied papers as the term MCO was only used in Malaysia. For the journal’s names, three topics identified were medical study, public health also business and education. Two papers with the most number of citations are both in social sciences. Investigating the properties of these topics, we found that papers on clinical studies are the ones with more chance to be cited and published by reputable publishers. These findings may help researchers on planning and strategizing for future research on COVID-19 specifying on Malaysia cases.

 

Keywords: COVID-19; movement control order; social sciences

 

ABSTRAK

Koronavirus COVID-19 telah mengejutkan seluruh dunia kerana ciri penularan jangkitannya yang melibatkan bukan sahaja kesihatan awam, tetapi juga ekonomi dan kehidupan sosial. Oleh kerana kesannya sangat penting, banyak kajian telah dijalankan dan masih dijalankan untuk mengkaji dan mengetahui lebih lanjut tentang virus ini dan bagaimana ia mengubah kehidupan seharian kita. Dalam makalah ini, kami mengkaji 134 artikel yang diterbitkan pada tahun 2020 berkaitan dengan COVID-19 dan mengecilkan skop kajian kepada Malaysia. Satu langkah alternatif telah diambil dengan menggunakan Latent Dirichlet Allocation (LDA) untuk mengenal pasti tema atau topik yang mendasari penerbitan ini. Dua analisis berasingan telah dijalankan, satu kepada judul makalah dan satu lagi untuk nama jurnal. Hasil kajian telah mengenal pasti tiga topik untuk data tajuk kertas iaitu kajian klinikal, kesan COVID-19 dalam pelbagai bidang dan Perintah Kawalan Pergerakan (MCO). Topik terakhir menunjukkan kriteria lokaliti dalam makalah yang dikaji kerana istilah MCO hanya digunakan di Malaysia. Untuk nama jurnal, tiga topik yang dikenal pasti adalah kajian perubatan, kesihatan awam serta perniagaan dan pembelajaran. Dua makalah dengan petikan tertinggi adalah dalam bidang sains sosial. Dalam kajian sifat topik ini, kami mendapati bahawa makalah mengenai kajian klinikal mempunyai peluang lebih baik untuk dipetik dan diterbitkan oleh penerbit terkemuka. Penemuan ini dapat membantu para penyelidik untuk merancang dan menyusun strategi untuk penyelidikan masa depan mengenai COVID-19 khusus untuk kes-kes di Malaysia.

 

Kata kunci: COVID-19; perintah kawalan pergerakan; sains sosial

 

RUJUKAN

Ahamad, D., Mahmoud, A. & Mahmoud, M. 2017. Strategy and implementation of web mining tools. International Journal of Innovative Research in Advanced Engineering 12(4): 1-7. doi: 10.26562/IJIRAE.2017.DCAE10081.

Aristovnik, A., Ravšelj, D. & Umek, L. 2020. A bibliometric analysis of COVID-19 across science and social science research landscape. Sustainability 12(21): 9132.

Azlan, A.A., Hamzah, M.R., Sern, T.J., Ayub, S.H. & Mohamad, E. 2020. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS ONE 15(5): e0233668.

Chahrour, M., Assi, S., Bejjani, M., Nasrallah, A.A., Salhab, H., Fares, M. & Khachfe, H.H. 2020. A bibliometric analysis of COVID-19 research activity: A call for increased output. Cureus 12(3): e7357. doi: 10.7759/cureus.7357.

Cai, C.W., Linnenluecke, M.K., Marrone, M. & Singh, A.K. 2019. Machine learning and expert judgement: Analyzing emerging topics in accounting and finance research in the Asia-Pacific. Abacus 55(4): 709-733.

Deng, Z., Chen, J. & Wang, T. 2020. Bibliometric and visualization analysis of human coronaviruses: Prospects and implications for COVID-19 research. Front. Cell. Infect. Microbiol. 10: 581404. doi: 10.3389/fcimb.2020.581404.

Elengoe, A. 2020. COVID-19 outbreak in Malaysia. Osong Public Health and Research Perspectives 11(3): 93-100.

Fan, J., Gao, Y., Zhao, N., Dai, R., Zhang, H., Feng, X., Shi, G., Tian, J., Chen, C., Hambly, B.D. & Bao, S. 2020. Bibliometric analysis on COVID-19: A comparison of research between English and Chinese studies. Frontiers in Public Health 8: 477. doi: 10.3389/fpubh.2020.00477.

Holcomb, Z.C. 1998. Fundamentals of Descriptive Statistics. New York: Taylor & Francis.

McLaren, H.J., Wong, K.R., Nguyen, K.N. & Mahamadachchi, K.N.D. 2020. COVID-19 and women’s triple burden: Vignettes from Sri Lanka, Malaysia, Vietnam and Australia. Social Sciences 9(5): 87.

Onan, A., KorukogluS. & BulutH. 2016. LDA-based topic modelling in text sentiment. Classification: An empirical analysis. International Journal of Computational Linguistics and Applications 7: 101-119.

Pham-Gia, T. & Hung, T.L. 2001. The mean and median absolute deviations. Mathematical and Computer Modelling 34: 921-936.

Shelton, R.C., Hatzenbuehler, M.L. & Metsch, L.R. 2017. Future perfect? The future of the social sciences in public health. Front. Public Health 5: 357. doi: 10.3389/fpubh.2017.00357

Sirisuriya, S.C.M. 2015. A comparative study on web scraping. Proceedings of 8th International Research Conference of KDU. General Sir John Kotelawala Defence University. pp. 135-140.

Tahamtan, I., Afshar, A.S. & Ahamdzadeh, K. 2016. Factors affecting number of citations: A comprehensive review of the literature. Scientometrics 107: 1195-1225.

Verma, S. & Gustafsson, A. 2020. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of Business Research 118: 253-261.

Wickham, H. 2011. ggplot2. Interdisciplinary Reviews Computational Statistics 3(2): 180-185.

Zamzuri, Z.H. 2021. Underreporting traffic accidents in Malaysia - A sentiment analysis. International Conference on Mathematics, Statistics and Their Applications 36: 01015.

Zamzuri, Z.H. & Gwee, J.H. 2020. Comparing and forecasting using stochastic mortality models: A Monte Carlo simulation. Sains Malaysiana 49(8): 2013-2022.

Zamzuri, Z.H., Sapuan, M.S. & Ibrahim, K.  2018. The extra zeros in traffic accident data: A study on the mixture of discrete distributions. Sains Malaysiana 47(8): 1931-1940.

Zhaou, W., Chen, J.J., Perkins, R., Liu, Z., Ge, W., Ding, Y. & Zou, W. 2015. A heuristic approach to determine an appropriate number of topics in topic modelling. BMC Bioinformatics 16: S8. https://doi.org/10.1186/1471-2105-16-S13-S8.

 

*Corresponding author; email: zamira@ukm.edu.my

 

 

   

sebelumnya