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Producing a Scale to Indicate the Volume of Liquid in a Container
(Menghasilkan Satu Skala untuk Menunjukkan Isipadu Cecair dalam Satu Bekas)

S.B. SAMAT* & C.J. EVANS

ABSTRACT

The present work considers the volume-depth relationship for several container shapes such as cylinders, spheres and 
cones. The evaluation of the volume corresponding to a given depth is easily carried out on a spreadsheet. A computer 
program is described for carrying out the inverse process, that is, to output values of depth corresponding to selected 
volumes, hence producing a depth-gauge. The calculation can take into account the shape of the container and how 
the divisions (numbered and un-numbered) should be distributed on the scale. If the scale is graduated as a fraction 
of the total volume and displayed at an arbitrary size on the monitor screen, then “universal” results are obtained, for 
example for any sphere, or any cylinder, etc., independent of its actual dimensions. In addition, if the volume is specified 
in litres (or gallons, or any other units) and the length of the depth-scale is specified, then a gauge can be produced 
that will suit that particular container. It can be displayed on the screen only as a scale drawing, but exact dimensions 
can be output as a file, which will allow the full-size gauge to be drawn, either using drawing-office equipment or an 
automatic drawing machine.
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ABSTRAK

Kerja ini mempertimbangkan hubungan antara isipadu dan kedalaman untuk beberapa bentuk bekas seperti selinder, 
sfera dan kon. Penilaian isipadu untuk satu kedalaman yang diberikan, adalah mudah dilakukan pada satu helaian 
hamparan. Satu program komputer dihuraikan untuk melakukan proses songsangan, iaitu, memberikan nilai kedalaman 
untuk isipadu yang dipilih, oleh yang demikian menghasilkan satu tolok kedalaman. Pengiraan boleh mengambil kira 
bentuk bekas itu dan bagaimana bahagian (bernombor atau tidak bernombor) perlu diagihkan pada skala. Jika skala 
adalah bergraduat sebagai satu pecahan isipadu total dan dipamerkankan pada satu saiz sembarangan pada layar 
monitor, maka keputusan “semesta” diperolehi, sebagai contoh untuk sebarang sfera, atau sebarang selinder, dan lain-
lain, bebas dari dimensi sebenarnya. Sebagai tambahan, jika isipadu dinyatakan dalam liter (atau gelen, atau unit lain) 
dan panjang skala kedalaman dinyatakan, maka satu tolok boleh dihasilkan untuk disesuaikan dengan bekas tertentu. 
Skala ini boleh dipamerkan pada skrin hanya sebagai satu skala lukisan, tetapi dimensi yang tepat boleh dikeluarkan 
sebagai satu fail, yang akan membenarkan tolok saiz sebenar dilukis, sama ada menggunakan peralatan lukisan pejabat 
atau mesin pelukis otomatik.

Kata kunci: Hubungan isipadu dan kedalaman; kon; selinder; sfera 

INTRODUCTION

Many container shapes bear a label showing their 
total volume when they are full. This total volume 
may be determined in general by three methods (1) by 
displacement: this is for any shape. For example, a typical 
kettle, like one we may own at home, can be filled with 
water. The amount of water that this kettle contains gives 
the total volume. So an experimental approach could be 
used to verify the total volume, (2) by algebraic formula: 
this can be used for simple container shapes. For example, 
shapes like vertical cylinder, sphere, hemisphere, cone, 
horizontal cylinder, horizontal cylinder with hemi-
spherical ends, and truncated cone. The total volume 
formulas for these eight shapes are given in Table 1, (3) 
by integral calculus: this is for any shape provided that 
a formula exists for its boundary.

 It is important to note here that the container’s 
orientation has no effect on this total volume. For example, 
for a cylinder, the total volume is the same whether it is 
horizontally or vertically mounted.
 Frequently, when the container is partially filled, it is 
important to know the level of the volume of liquid. The 
information of this partial volume is normally indicated 
by a volume gauge. Several methods are normally used 
to produce a scale to indicate the volume of liquid in a 
container. 
1. By displacement: for example, a modern plastic 

electric kettle often has a volume gauge on a vertical 
transparent tube attached to it, giving the volume in 
terms of the number of cups of tea. If the kettle does 
not have the form of a vertical cylinder, then the 
graduations on the volume gauge are not uniformly 
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spaced. Somebody must therefore have solved the 
problem of relating volume to depth – possibly using 
an “experimental” approach, in which they added 
water, one cupful at a time, and put marks on the 
depth gauge, and then used this as a “master” from 
which to develop a mass-produced version. This 
same experimental technique with the use of vertical 
transparent tube may also be applied to the simple 
external rainwater tank gauge (home.iprimus.com 
2008), where the top of the tube would be open to 
the air. In cases where the container is pressurised, or 
its contents are volatile or toxic, the top of the tube 
would be connected to the top of the container.

2. By electronic gadgets: various methods of electronic 
(remote) read-out are also possible. A pressure 
transducer at the bottom of the container would give 
a signal proportional to the depth of liquid and, in the 
case of a pressurised container, two transducers, at the 
top and bottom, would be needed to give the pressure 
difference(O’Shea 2004). The most popular method 
is a float connected to an electrical potentiometer. 
This combines the non-linearity of the volume-depth 
relationship with an additional non-linearity because 
the float follows a circular arc rather than a vertical 
line (Neeser & Kuechenmeister 2002). 

 In contrast to the total volume, the volume gauge to 
indicate the partial volume is affected by the container’s 
orientation. For example, the gauge has a different scale 
for a horizontally-mounted cylinder, than for a vertically 
mounted one.
 There are many web-sites which enable visitors to 
calculate on-line the total volume and partial volumes 
(Neeser & Kuechenmeister 2002; Mathguide 2008; To 
2008; Lutus 2009; AquaDyn 2008 ). There are web-sites 
informing visitors of their patented volume-gauge devices 

(O’Shea 2004; Neeser & Kuechenmeister 2002). These 
volume gauges are not necessarily meant for liquids; 
devices for gases (home.iprimus.com 2008; O’Shea, 
2004; Shouman 2004) and liquefied gases (Bryukhanov & 
Grigorovskii 1976) are also reported. All these web-sites 
or reports however do not produce a scale to indicate the 
volume of liquid in a container. We discuss here a unified 
procedure to produce this scale for the eight container 
shapes given in Table 1. This is done by theoretical 
deduction of the volume-depth relationship.

MATERIALS AND METHOD

Eight container shapes are considered in this work. Their 
names and dimensions are given in Table 1. The dimensions 
will then be used:
1. to state the well-known total volume formula V. This 

is shown in the last column of Table 1,
2. to derive the relationship between fractional total 

volume F(x) and the fractional total depth f(x), where 
x is the depth of liquid, measured from the container’s 
lowest point. This is shown in the last column of Table 
2.

We shall now describe the method used to get F(x) in terms 
of f(x) using the following steps:
1. we get f(x), the fraction of total depth f at depth x,
2. we get r(x), the horizontal plane radius r at depth x, 

for those cases where the cross-section is circular
3. we get A(x), the horizontal plane area A at depth x, 

except where it is easier to use a geometrical method 
to get the volume directly

4. we get V(x), the volume formula at depth x, and
5. lastly we divide V(x) by V, then write the results in 

terms of f, to get F.

TABLE 1. The eight containers with their configurations considered in this work. 
The well-known total volume formula will be used in Table 2

Container 
symbol

Shape
Dimensions Total volume 

formula
VTotal depth Radius Extra

C1 Vertical cylinder b a – πa2b

C2 Sphere 2a a – 4/3πa3

C3 Hemisphere a a for bottom plane – 2/3πa3

C4 cone (point up) b a for bottom plane – 1/3πa2b

C5 cone (point down) b a for top plane – 1/3πa2b

C6 horizontal cylinder 2a a – πa2L

C7 horizontal cylinder 
with hemi-spherical 
ends

2a for central 
cylinder

a for central cylinder m = a/L, where L 
= length of central 
cylinder, a = depth of 
end-caps

πa2(L + 4/3a)

C8 truncated cone b a for bottom plane k = a’/a, where a’ = 
radius of top plane

πb(a2 + aa’ + a’ 2)/3
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 Steps 1, 2 and 3 are usually straightforward geometry. 
Step 5 on the other hand is simple mathematics. To perform 
step 4, however we use integral calculus. To explain this 
integration, we consider a container of arbitrary shape, 
filled to a depth x, as shown in Figure 1. If we now add a 
small additional volume δV, to V(x), the depth increases 
by δx, and we see that δV = A(x)δx. As δx → 0, we get 
the derivative:

 
  .
Therefore

 

 Note that the variable x' is introduced here to 
distinguish the limit x from the quantity that runs from 0 
to x. Although we can describe this process in words as 
“Integrate the area with respect to x, and substitute in the 
limits 0 and x...”, we should be aware that this description 
uses one symbol, x, with two different meanings. 

VERTICAL CyLINDER C1, SPHERE C2, HEMISPHERE C3, 
CONE (POINT UP) C4 AND CONE (POINT DOWN) C5

Using the method described above, the five steps listed 
in section previous for these five shapes are shown in 
Table 2. 

TO GET f IN TERMS OF f, FROM ALL THE FIVE STEPS

 We take the sphere C2 as an example here. For this shape, 
f(x)=x/2a. The cross-section at a depth x will be a circle with 
radius r = √[a2 – (a – x)2] and area A(x) = π[a2 – (a – x)2] = 
π(2ax – x2). Integrating with respect to x, and substitutiog 

FIGURE 1. Illustrating the relation between cross-sectional 
area and volume

in the limits 0 and x, we get V(x) = π(ax2 – x3/3). The 
expression for the fractional volume is F(x) = V(x)/V(2a) 
= π(ax2 - x3/3)/(4/3πa3) = ¾[4(x/2a)2 – 8(x/2a)3/3] = 
3f2 – 2f3.
 To verify V from V(x) we take the same C2. Table 1 
gives the total volume of a sphere as 4/3πa3. Column 5 in 
Table 2 gives V(x) = π(ax2 – x3/3) for a sphere. Substituting 
x = 2a as the full depth into this V(x), we therefore 
verify that the total volume V(2a) = π[a(2a)2 – (2a)3/3] = 
πa3(4 – 8/3) = 4/3πa3.

CONTAINER C3 AND SOME GENERALISATIONS

Hemisphere C3 is a special case of a semi-ellipsoid. 
We purposely do not include this semi-ellipsoid in the 
table, as this shape has the same F(f) as the hemisphere 
C3. In other words, this is a universal relation, applying 
to semi-ellipsoids of any proportions, including a 

TABLE 2. The steps taken in order (from left column to right column), to derive the dependence of fraction 
of total volume F on the fraction of total depth f, for each shape

Container 
symbol

The horizontal plane at depth x Volume formula at 
depth x, V(x)

F(a

f(x) r(x) A(x)

C1 x/b a πa2 πa2x f

C2 x/2a √[a2 – (a – x)2] π(2ax – x2) π(ax2 – x3/3) 3f 2 – 2f 3

C3 x/a √(a2 – x2) π(a2 – x2) π(a2x – x3/3) (3f – f 3)/2
C4 x/b a(1 – x/b) π(a/b)2(b2– 2bx + x2) π(a/b)2(b2x – bx2 + x3/3) 1 – (1 – f)3(b

C5 x/b ax/b π(ax/b)2 π(a/b)2x3/3 f 3(b

C6 x/2a, or (1–cosθ)/2 –(c –(c ½a2L×(2θ – sin 2θ) (2θ –sin2θ) /(2π)
C7 x/2a, or (1–cosθ)/2 √[a2 – (a – x)2](d π(2ax – x2)(d ½a2L×(2θ – sin2θ) 

+ π(ax2 – x3/3)
{1/2π(2θ–sin2θ) 
+ m[(1–cosθ)2

– (1–cosθ)3/3]}/(1 + 4/3m)
C8 x/b a’x/b + a(1 – x/b) π[b + (a’ – a)x/b]2 π/b2[b2a2x + ba(a’–a)x2

+ (a’–a)2x3/3]
[3f + 3(k–1)f 2

+ (k–1)2f 3]/(1 + k + k 2)

aThis is equal to V(x)/V, in which V is given in Table 1. 
bBoth of these relationships also apply to cones with elliptical cross-sections and pyramids.
cThis is irrelevant as the volume is more easily calculated directly.
dThis is only the second part of the shape namely the two hemispherical endcaps. The first part (central cylinder) is irrelevant here.
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hemisphere. An ellipsoid can be regarded as a sphere that 
has been stretched in one or more dimensions, and this 
transformation does not change the fractional volume F 
or the fractional depth f, so it should not be surprising that 
the result is the same. Alternatively, it is possible to treat 
the semi-ellipsoid from first principles. If we consider 
a semi-ellipsoid with total depth b, and radius (of the 
bottom plane) a, (i.e. the three semi-axes are a, a and b), 
then the radius r and depth x are related by the standard 
equation for an ellipse: r2/a2 + x2/b2 = 1. The total volume 
is 2/3πa2b. For this shape, f = x/b, r = (a/b)√(b2 – x2), 
A(x) = π(a/b)2(b2 – x2), V(x) = π(a/b)2(b2x – x3/3). The 
expression for the fractional volume is F(x) = V(x)/V(b) 
= π(a/b)2(b2x – x3/3)/(2/3πa2b) = 3/2[x/b – 1/3 (x/b)3] = 
(3f – f3)/2. This F(x) is the same as we obtained for the 
hemisphere. Notice also that the total volume 2/3πa2b may 
be verified if we substitute x = b, the total depth, into V(x) 
= π(a/b)2[b2x – x3/3].

HORIzONTAL CyLINDERS C6 AND C7

These are respectively the horizontal cylinder with plane 
ends and horizontal cylinder with spherical end-caps. 
These two shapes are dealt with separately because the 
horizontal plane through these two shapes at depth x cannot 
be described in terms of the radius. This is the reason why 
the results of steps 2 and 3 for these shapes in Table 2 are 
left empty. 
 To get V(x) for these two shapes, we can get the 
horizontal area A(x) at depth x, then integrate with respect 
to x:
1. For C6: the horizontal area is A(x)= 2L√[a2 – (a – x)2]. 

This case is more difficult to integrate, because 
the square root remains in the integral, but the 
substitution cosθ = (a – x)/a allows the integration to 
be completed.

2. F o r  C 7 :  t h e  h o r i z o n t a l  a r e a  i s  A ( x ) = 
2L√[a2 – (a – x)2] + π[a2 – (a – x)2], where the first 
part is the surface area contained in the central 
cylinder and second part is the area contained in the 
two hemispheres of radius a added to the ends. As 
above, the first part is difficult to integrate although 
the second part is identical to the case of the sphere, 
C2.

 The above problem of integration can be avoided by 
using a geometrical approach. In Figure 2, representing 
the cross-section of the container, OA = OB = OC = OE = a, 
DE = x, and AB is the surface of the liquid.
 We want the area of ADBE. This is equal to (area of 
the sector OAEB) – (area of the triangle OADB). Letting θ 
represent the angle AOE (= BOE), we use the well-known 
formulas for the area of a sector and the area of a triangle, to 
get the result 2 × ½ θ a2 – ½ a2 sin 2θ = ½ a2(2θ – sin 2θ). 
cosθ = (a – x)/a. Bearing in mind for this shape f = x/2a, 
we can write cosθ = 1 – x/a = 1 – 2f.

HORIzONTAL CyLINDER WITH PLANE ENDS C6

The volume at depth x is therefore V(x) = (length L)×(area 
of segment ADBE) = ½ a2L(2θ – sin 2θ). We then obtain 
F(x) = V(x)/V(b) = (2θ – sin 2θ)/(2π). Although we can 
now express this in terms of x, this does not help with the 
numerical evaluation, because in a practical calculation we 
would first find the value of θ. Similarly the relationship 
between the dimensionless quantities F and f can be 
obtained by substituting f = (1 – cosθ)/2, but again a two-
step evaluation process is simpler to carry out.

HORIzONTAL CyLINDER WITH SPHERICAL END-CAPS C7

This is a common choice for a container of pressurised 
liquids or gases (although it is only for the case of a liquid 
that a depth gauge would be relevant). To find the volume 
at depth x, we add the previous result V(x) = ½ a2L(2θ – 
sin 2θ) to the result for the sphere V(x) = π[ax2 – x3/3], to 
obtain V(x) = ½ a2L(2θ – sin 2θ) + π[ax2 – x3/3].
 In this case, the dependence of F on f will not 
be a universal relationship, as the problem contains a 
dimensionless parameter m = a/L, giving a family of 
graphs of F against f. Given a particular value of m, we 
can imagine the container compressed (or stretched) along 
its axis, so that the end-caps become semi-ellipsoids. The 
parameter m therefore has a wider interpretation: the ratio 
of the depth of the ellipsoidal end-caps to the length of 
the cylinder. To see the dependence on m more clearly, we 
substitute x = a(1 – cosθ) and a = mL in the expression for 
V(x), and divide by the total volume V(2a)=πa2(L + 4/3a) 
to get

F = {1/2π L(2θ – sin 2θ) + mL[(1 – cosθ)2 – 
  (1 – cosθ)3/3]}/(L + 4/3mL)
 = {1/2π (2θ – sin 2θ) + m[(1 – cosθ)2 – 
  (1 – cosθ)3/3]}/(1 + 4/3m),

FIGURE 2. Cross-section of horizontal cylinder, 
showing liquid level at AB
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where   f = ½(1 – cosθ).

 We also note that pressure vessels often have concave 
end caps (like the base of an aerosol can). These cases 
can be included by giving m a negative value (m > –0.5, 
otherwise the two end caps will intersect). 

TO VERIFy V FROM V(x) FOR C6 AND C7

Table 1 yields the total volume of containers C6 and C7 
respectively as πa2L and πa2(L + 4/3a). For C7, substituting 
x as the full depth 2a, we will first get cosθ = –1, which 
means θ = π. Using these values of x = 2a and θ = π in V(x) 
= ½ a2L(2θ – sin 2θ), we then verify the total volume V(2a) 
= ½ a2L(2π – sin 2π) = πa2L. For C7, similarly substituting 
x = 2a and θ = π in V(x) = ½ a2L(2θ – sin 2θ) + π[ax2 – x3/3], 
we get V(2a) = ½ a2L(2π – sin 2π) + π[a(2a)2 – (2a)3/3] 
= πa2(L + 4/3a). 

TRUNCATED CONE C8 

The truncated cone, or frustum, has total depth b, with 
radii a and a’ at the bottom and top respectively. The total 
volume V = πb(a2 + aa’ + a’ 2)/3. The ratio k = a’/a will 
appear as a parameter in this case.

TO GET F IN TERMS OF f, FOR C8, FROM ALL THE FIVE STEPS

The radius at depth x is r(x) = a’x/b + a(1 – x/b), and 
the area at depths x is A(x) = π[b + (a’ – a)x/b]2. The 
volume is obtained by integrating A(x), giving V(x) = π/
b2[b2a2x + ba(a’ – a)x2 + (a’ – a)2x3/3]. Bearing in mind for 
this shape x = bf, a’ = ka, the expression for the fractional 
volume is F = V(x)/V(b):

 

  

 Again, F is seen to be a function of f, with k appearing 
as a dimensionless parameter. For the particular cases k = 
0, k = 1 and k → ∞, this reduces to the results obtained 
above for a cone (point up), a vertical cylinder, and a cone 
(point down).

TO VERIFy V FROM V(x) FOR C8

Substituting x = b in V(x), we obtain
 V(b) = π/b2[b2a2x + ba(a’ – a)x2 + (a’ – a)2x3/3]
  = π/b2[b2a2b + ba(a’ – a)b2 + (a’ – a)2b3/3] 
  = πb(a2 + aa’ + a’2)/3. 

RESULTS

Figure 3 shows the variation of F with f for the various 
cases considered above, except for the horizontal cylinder 
with spherical ends and the frustum of a cone. The vertical 

cylinder is of course represented by a straight line. Of the 
others, the horizontal cylinder shows the least deviation 
from the straight line, followed by the sphere and the 
hemisphere and finally the two orientations of a cone. The 
results for the horizontal cylinder with spherical ends are 
shown in figure 4, for a few different values of the ratio 
of end-cap depth to cylinder length. The curve that is 
closest to a straight line is for the concave end-caps with 
m = –0.4, and the most-curved one is for a sphere. Figure 
5 shows the relationship between F and f for the frustum 
of a cone, with a few different values of ratio (top radius)/
(bottom radius).

FIGURE 3. Volume-depth relationship F(f) for six container 
shapes. The six curves are: C4-Cone (point up), C3-

hemisphere, C2-sphere, C6-horizontal cylinder, 
C1-vertical cylinder and C5-cone (point down)

FIGURE 4. Volume-depth relationship F(f) for container shape 
C7, horizontal cylinders with spherical end-caps, for six values 

of the ratio m = (end-cap depth)/(cylinder length). Reading 
top-to-bottom (near f ≈ 0.2) the curves are respectively for 
m = –0.4, –0.2, 0 (a horizontal cylinder with plane ends), 

0.5, 2 and ∞ (a sphere)

CONSTRUCTING A PRACTICAL VOLUME GAUGE

In order to construct a volume gauge, it is more useful to 
have f as a function of F. In other words, when F = 0.1, we 
need to draw a line on the depth gauge at the corresponding 
fractional depth f, and mark it “0.1”, or the actual volume in 
litres. The problem is therefore one of finding the inverse of 
the formula giving F as a function of f. Although it would 
be possible to read this information from the graphs shown 
above, it may not be sufficiently accurate and a calculation 
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is therefore needed. In the first case (a vertical cylinder), it 
is trivial to invert the relation F = f to produce f = F. The 
cone (point down) has the relation F = f 3, which inverts to 
f = F1/3. The cone (point up) is only slightly more difficult, 
and gives f = 1 – (1 – F)1/3. In the case of the frustum of 
a cone, we can put y = (1 – k)f and rearrange to obtain 
1 – F(1 – k3) = (1 - y)3, which can easily be solved for y, 
and hence for f.
 The other cases will have much more complicated 
analytic solutions (involving the general solution of a cubic 
equation, and a transcendental equation for the horizontal 
cylinder), so it will be best to write a computer program 
to use a numerical method of successive approximation. 
Generally the problem involves solving the equation 
F(f) – G = 0, where G is one of the specified values (0.1, 0.2, 
etc.). The Newton-Raphson method can then be applied. In 
this, we take an approximate value of f, evaluate F – G and 
its derivative, F’, and obtain an improved approximation 
from the formula f – (F – G)/F’. For the horizontal cylinder, 
with or without end-caps, this process is best applied first 
to θ (i.e. by making θ the independent variable instead of 
f), and then finding f in a subsequent step.
 When the volume gauge is required to be calibrated 
in litres (or any other units), and the gauge drawn out full-
size, then a screen picture is not sufficient. In this case, 
the program can be requested to output a table of values 
giving the selected volumes, the position of the marker 
(e.g. rounded to 0.1 mm), the length of the line, and the 
number (if any) to be attached to that marker. This table 
can then be used for producing an accurate scale by hand, 
or suitably formatted to be input to an automatic drafting 
machine.

WRITING THE PROGRAM

If the program is written in Visual Basic (or a similar 
“visual” language), then the user can enter information 
into text boxes or to click on option buttons. For example, 
one set of option buttons can select from the different 

shapes. For the shapes considered in the present work there 
would be eight options. Another set of two option buttons 
can select whether a universal scale is required (i.e. one 
showing the fractional volume from 0 to 1) or one to suit 
a real container. Alternatively, these two sets of choices 
could be provided by drop-down menus.
 Other parameters have to be entered into text boxes. 
These can include: major division, un-numbered main 
division, un-numbered subdivision, extra parameter (the 
quantity m as defined for the horizontal cylinder with end 
caps, and k as defined for the truncated cone. Where actual 
units are being used, the user would need to supply the 
scale length (assumed to be in metres), actual container 
volume and volume units (e.g. litres, gallons, etc.).
 A screen-shot illustrating the above ideas is shown in 
Figure 6. In this, the container is a truncated cone (chosen 
to illustrate the use of the “extra parameter”)

FIGURE 5. Volume-depth relationship F(f) for container shape 
C8, truncated cones, for eleven values of the ratio k = (top 

radius)/(bottom radius). The three cases k = 0, 1, and ∞ 
correspond to a cone (point up), vertical cylinder 

and cone (point down)

FIGURE 6. A screen shot of the program interface

 The text entries shown in Figure 6 have the following 
meanings.
1. Major division: Since the actual units are being used, 

and the container volume is 175, it will be convenient 
to number every 20 units. 10 would also have been a 
sensible choice, while 5 might give numbering that 
is too close together. If we had requested values as 
a fraction of the full scale, then the sensible choices 
would be 0.05, 0.1 or 0.2.

2. Un-numbered main division: If the 20 units (major 
division) were only divided into 4 or 5 subdivisions, 
then there would be no difficulty in reading these. If 
we divide them into 10 or 20 subdivisions, then some 
additional marking is necessary to avoid having to 
count divisions, so an additional longer line is placed 
on the scale every 10 units.

3. Un-numbered subdivision: The smallest divisions, 
indicated by the shortest lines, are placed at two units 
apart. If we had placed these at every unit, then the 
previous input (un-numbered main division) should 
have been reduced to 5.
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4. Extra parameter. Since, in this example, the container 
is a truncated cone, the extra parameter, 0.5, is the ratio 
of the top radius to the bottom radius.

5. Actual scale length. As an example, we suppose that 
the total height of the container is 1.00 m.

6. Actual container volume. This is specified as 175. 
Since the smallest divisions are 2 units apart, the 
largest marked volume in the container will be 174. 
An additional number is placed on this mark.

7. Volume units (e.g. litres, gallons, etc.). In this example, 
the units are litres. This information is not used in the 
calculation, but merely appears as the heading of the 
output file.

8. Saving to the file where the output is stored, for transfer 
to a drawing office or an automatic drafting machine, 
has been selected via the “Save file” dialogue, which 
is activated when the tick-box “Save data table” is 
clicked. Normally, the program would first be run 
without saving the data table. If the picture of the 
scale is not suitable, then the “Start Again” button 
would be clicked and any necessary modifications 
made to the parameters (any that are not changed 
should stay the same). When the picture of the scale 
is satisfactory, the “Start Again” button is pressed, and 
the “Save data table” box is checked. This initiates 
one more program execution during which the output 
file is saved. Clicking the tick-box again ensures that 
the next run does not overwrite the saved data, and 
clicking it again invites the user to specify a new file 
for saving.

 The vertical picture window shows the output scale, 
scaled to fit onto the screen. The window to the top right 
is used for the operating instructions.
 The output file can take the form shown in Table 3 
(illustrated for the data of figure 6). This is formatted in 
a suitable form for reading into Excel as a three-column 
table, plus the heading “Litres”. The first column gives the 
height of the scale mark above the bottom of the container, 
rounded to 0.1 mm. The second column gives the size of 
the scale marking: 1 for the shortest lines, 2 for the larger 
un-numbered divisions, and 3 for the major (numbered) 
divisions. The third column gives the information that is 
to be printed alongside each scale marking – the program 
should output this as a text quantity, so that Excel (for 
example) does not re-format it. Otherwise there would 
be a “0” alongside every un-numbered division, whereas 
we require a blank at these positions. This text file can be 
edited if, for example, the added value (in this case 174) 
is too close to the previous value (in this case 160).

CONCLUSION

We have described a method of graduating a volume scale 
for reading the contents of containers of various shapes. It 
should be possible to manufacture the shapes considered 

to a high accuracy so that a simple specification, such 
as “horizontal cylinder” is sufficient to define the shape 
adequately, and the computed volume gauge should be 
very accurate. There would be several other shapes that 
can be easily specified in this way, and the calculation can 
be completed following the techniques used in this paper. 
More complicated shapes are likely to have less precise 
manufacturing tolerances. Some shapes require different 
formulas over different ranges of depth, making it slightly 
more difficult to use the Newton-Raphson method. In such 
cases, there may not be much advantage in computing the 
scale, in comparison with carrying out an “experimental” 
calibration, by pouring in known volumes and noting the 
height of the liquid in the container.
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TABLE 3. The first and last sections of the output file for the 
example of Figure 6

“Litres”
“Depth”,”Line-size”,”Value”
.0,3,”0.0”
.0067,1,””
.0134,1,””
.0202,1,””
.027,1,””
.0339,2,””
.0408,1,””
.0478,1,””
.0548,1,””
.0619,1,””
.069,3,”20.0”
.0762,1,””
.0834,1,””
.0907,1,””
.0981,1,””
.1055,2,””
.1129,1,””
.1204,1,””
.128,1,””
.1357,1,””
.1434,3,”40.0”
.1511,1,””
.159,1,””
.............
.............
.7926,1,””
.8112,1,””
.8304,3,”160.0”
.8502,1,””
.8708,1,””
.8921,1,””
.9142,1,””
.9373,2,””
.9615,1,””
.9868,3,”174.0”
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