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Upgrading Logic Programming in Hopfield Network 
(Mempertingkatkan Logik Program dalam Rangkaian Hopfield)

SARATHA SATHASIVAM 

ABSTRACT

The convergence property for doing logic programming in Hopfield network can be accelerated by using new relaxation 
method. This paper shows that the performance of the Hopfield network can be improved by using a relaxation rate 
to control the energy relaxation process. The capacity and performance of these networks is tested by using computer 
simulations. It was proven by computer simulations that the new approach provides good solutions.
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ABSTRAK

Kriteria penumpuan untuk melakukan program logik dalam rangkaian Hopfield dapat dipertingkatkan dengan 
menggunakan kaedah berehat yang baru. Dalam artikel ini ditunjukkan bahawa operasi rangkaian Hopfield dapat 
dipertingkatkan dengan menggunakan kadar rehat bagi mengawal proses relaksi tenaga. Saiz dan kadar operasi rangkaian 
ini di uji dengan menggunakan simulasi komputer. Dibuktikan melalui simulasi komputer kaedah baru memberikan 
penyelesaian yang baik.

Kata kunci: Klausa program; rangkaian Neural Little-Hopfield; santaian tenaga 

INTRODUCTION

A Little-Hopfield neural network (Little 1974) minimizes a 
Lyapunov function, also known as the energy function due 
to obvious similarities with a physical spin network. Thus, 
it is useful as a content addressable memory or an analog 
computer for solving combinatorial-type optimization 
problems because it always evolves in the direction that 
leads to lower network energy. This implies that if a 
combinatorial optimization problem can be formulated as 
minimizing the network energy, then the network can be 
used to find optimal (or suboptimal) solution by letting the 
network evolve freely.
 Wan Abdullah (1992) proposed a method of doing 
logic program on a Hopfield network. Optimization of 
logical inconsistency is carried out by the network after the 
connection strengths are defined from the logic program; 
the network relaxes to neural states which are models 
(i.e. viable logical interpretations) for the corresponding 
logic program. Using this method as basis, the energy 
landscape of a Little-Hopfield neural network programmed 
with program clauses is proven to be rather flat (Saratha 
& Wan Abdullah 2008a, b). This is supported by the very 
good agreement with computer simulation results for 
corresponding network relaxation. 
 In the Hopfield network, a solution of an optimization 
problem is obtained after the network is relaxed to an 
equilibrium state (Haykin 1999). This paper shows that 
the performance of the Hopfield network can be improved 
by using a relaxation rate to control the energy relaxation 
process.

MeTHOD

THe LITTLe-HOPFIeLD MODeL

The Hopfield model (Hopfield 1982, 1985) is a standard 
model for associative memory. The Little dynamics is 
asynchronous, with each neuron updating their state 
deterministically. The system consists of N formal 
neurons, each of which is described by Ising variables 
Si(t),(i=1,2,….N). Neurons then are bipolar, Si∈{-1, 
1}, obeying the dynamics Si→sgn(hi), where the field, 

, i and j running over all neurons N,  is 

the synaptic strength from neuron j to neuron i, and -Ji is 
the threshold of neuron i. 
 Restricting the connections to be symmetric and 
zero-diagonal, , allows one to write a 
Lyapunov or energy function,

   (1)

which monotone decreases with the dynamics.
 The two-connection model can be generalized to 
include higher order connections. This modifies the “field” 
to be 

   (2)

where “…..” denotes still higher orders, and an energy 
function can be written as follows:
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  (3)

provided that  for i, j, k distinct, with […] denoting 
permutations in cyclic order, and  for any i, j, k equal, and 
that similar symmetry requirements are satisfied for higher 
order connections. The updating rule maintains
  
 Si(t + 1) = sgn[hi(t)]. (4)

LOGIC PROGRAMMING

In the simple propositional case, logic clauses take the form 
A1, A2,…., An ← B1, …,, Bm., which says that (A1 or  A2 or 
…. or An) if (B1 and B2 and … and Bn); they are program 
clauses if n = 1 and m ≥ 0 : we can have rules e.g.  A←B,C.
saying  and assertions e.g.  D←. 
saying that D is true.
 A logic program consists of a set of program clauses 
and is activated by an initial goal statement. In Conjunctive 
Normal Form (CNF), the clauses contain one positive 
literal.
 Basically, logic programming in Hopfield model 
(Altenberg 1997) can be treated as a problem in 
combinatorial optimization. Therefore it can be carried 
out in a neural network to obtain the desired solution. Our 
objective is to find a set of interpretation (i.e., truth values 
for the atoms in the clauses which satisfy the clauses (which 
yields all the clauses true). In other words, the task is to 
find ‘models’ corresponding to the given logic program.
 The following algorithm shows how a logic program can 
be done in a Hopfield network based on Wan Abdullah’s 
(1992) method.
1. Given a logic program, translate all the clauses in the 

logic program into basic Boolean algebraic form.
2. Identify a neuron to each ground neuron.
3. Initialize all connections strengths to zero.
4. Derive a cost function that is associated with the 

negation of all the clauses, such that  represents 
the logical value of a neuron X, where Sx is 

the neuron corresponding to X. The value of is define 
in such a way that it carries the values of 1 if X is true 
and -1 if X is false. Negation (neuron X does not occur) 
is represented by ; a conjunction logical 
connective is represented by multiplication whereas 
a disjunction connective is represented by addition.

5. Obtain the values of connection strengths by 
comparing the cost function with the energy, H.

6. Let the neural networks evolve until minimum energy 
is reached. Check whether the solution obtained is a 
global solution.

 The applied methodology may be summarized in the 
following way. Given an optimization problem, find the 

cost function that describes it, design a Hopfield network 
whose energy function must reach (one of) its minima at 
the same point in configuration space as the cost function, 
so that the stable configurations of the network correspond 
to solutions of the problem. 

ReLAXATION RATe

The quality of a solution obtained by the Hopfield network 
can be affected by certain factors such as parameter setting 
in the energy function. According to Zeng & Martinez 
(1999), one of the important factors which influence the 
quality of a solution is the difference in the frequency that 
a neuron receives information from other neurons
 If the network relaxed too fast, there will be fewer 
opportunities for exchange of the information between 
neurons, and therefore a solution formed under this 
condition has poor quality. However, with a fast relaxation 
there will exist an inefficient use of the network due to an 
unnecessarily large number of iterations required to form 
a solution. 
 In order to overcome the problems described above 
the usage of the relaxation rate in the network dynamics is 
considered. The function of the relaxation rate is to adjust 
the speed of the relaxation so that solutions with better 
quality can be obtained. Precisely, the input of the neuron 
is updated according to the following dynamic equation:

  (5)

where R is the relaxation rate and hi is the local field defined 
in equation (2). The relaxation rate R reflects how fast the 
network relaxed. The value of R is an adjustable parameter 
and can be determined empirically.
 There are two types of relaxation rates that are studied 
and evaluated by computer simulation. There are constant 
relaxation rate which is invariant through the whole 
relaxation process and dynamic relaxation which depends 
on the iteration and is chosen randomly. The main objective 
for analyzing dynamic relaxation rate is to explore the 
possibility that there exist different optimal relaxation rates 
at different levels during the energy relaxation process.

IMPLeMeNTATION OF THeORY

Firstly, random program clauses are generated. Then, 
initializing initial states for the neurons in the clauses 
is been carried out. Next, let the network evolve until 
minimum energy is reached. During the energy relaxation 
phase, local field, hi, is modified according to equation 
(5). After the network relaxed to an equilibrium sate, test 
the final state obtained for the relaxed neuron whether it 
is a stable state. If the states remain unchanged for five 
steps, then consider it as stable state. Following this, 
calculate the corresponding final energy for the stable 
state. If the difference between the final energy and the 
global minimum energy is within tolerance value, then 
consider the solution as global solution. Calculate the 
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global minima ratio (number of global minima solutions/
number of iterations).
 We run the relaxation for 1000 trials and 100 
combinations of neurons so as to reduce statistical error. 
The selected tolerance value is 0.001 and the number of 
neurons set to 0-100 (Saratha 2006). The value of dt in 
equation (5) is set to be 10-5 (Zeng & Martinez 1999). All 
these values were obtained by trial and error, where several 
values were tried as tolerance values, and the selected value 
gives better performance than other values. For constant 
relaxation rate, we initialize R=2, R=4.5 and R= 0.5 (Zeng 
& Martinez 1999).

ReSULTS AND DISCUSSION

CONSTANT ReLAXATION RATe

Simulation results using a constant relaxation rate is 
presented. Figure 1, 2 and 3 show global minima ratio for 
the network with and without relaxation rate. The network 
without using a relaxation rate based on equation (2) and 
network using a relaxation rate is based on equation (5). 

DYNAMIC ReLAXATION RATe

A dynamic relaxation rate with the following form is 
included in the network:

  
(6)

 R(M) = R1 (M ≥ M1) (7)

where R(M) is the dynamic relaxation rate which is a 
function of iteration M. R(M) is equal to R0 initially (when 
M = M0 = 0), and then increases linearly with M until 
reaching R1 at M = M1.
 From Figure 4, it can be observed that when the 
relaxation rate has a lower value when the number of 
neurons are smaller, the neurons have enough chances 
to exchange information and to relax to global minima 
values. The value of R1 is set to be 3.0 because in the 
previous section, we had shown that the network shows 
best performance between 2 ≤ R ≤ 4. When the number 
of neurons increased, neurons have more time to relax to 
the global values by avoiding local trapped or oscillations. 
Due to that, it can be observed from Figure 4 that, the ratio 
increased as the number of neurons increased. Figure 5 
shows the comparison between global minima ratio for the 
dynamic relaxation rate and constant relaxation rate using 
several different M1 alues. The constant relaxation rate for 
comparison is chosen to be 4.0 because it achieves the best 
performance as shown in the previous section. Meanwhile, 
number of neurons is chosen as 100. We can see that the 
performance of a dynamic relaxation rate depends on the 
iteration. When the iteration increased, the global minima 
ratio also increased relatively.
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FIGURe 1. Ratio of Global Minima for R=2
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FIGURe 2. Ratio of Global Minima for R=4.5

CONCLUSION

In this paper, the energy relaxation process of Hopfield 
network in doing logic programming been analyzed. It 
was proven that the relaxation has an important impact on 
the performance of the network. A relaxation rate has been 
introduced into the network dynamics to control the pace 
of network relaxation. The network using a relaxation rate 
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FIGURe 3. Ratio of Global Minima for R=0.5

FIGURe 4. Dynamic relaxation rate with the parameters:  
M0 = 0, R0 = 2.0, R1 = 3.0 and for different values of M1
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has been shown to have a better performance than without 
using a relaxation rate. We also showed that dynamic 
relaxation rate performs better than constant relaxation 
rate when the network gets more complex (number of 
iterations increased).
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FIGURe 5. Global minima ratio comparison between dynamic 
relaxation rate and constant relaxation rate
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