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ABSTRACT

In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal 
residual (CGNR) iterative method by using composite Simpson’s  (CS) and finite difference (FD) discretization schemes 
in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard 
or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the 
proposed method, several analyses were carried out such as computational complexity and percentage reduction on the 
proposed and existing methods. 

Keywords: Conjugate gradients normal residual method; linear Fredholm integro-differential equations; quarter-sweep 
iteration 

ABSTRAK

Dalam kertas ini, kami telah menganalisis keberkesanan konsep lelaran sapuan suku ke atas kaedah lelaran kecerunan 
konjugat sisa biasa (CGNR) dengan menggunakan komposit Simpson’s  (CS) dan beza terhingga (FD) dalam menyelesaikan 
persamaan integro-pembezaan Fredholm. Bagi tujuan perbandingan, Gauss-Seidel (GS) dan kaedah CGNR biasa atau 
penuh dan separuh sapuan iaitu FSCGNR dan HSCGNR juga turut dibincangkan. Bagi mengesahkan keberkesanan kaedah 
yang dicadangkan, beberapa analisis seperti kekompleksan pengiraan dan pengurangan peratusan untuk kedua-dua 
kaedah yang dicadangkan dan sedia ada telah dijalankan.

Kata kunci: Kaedah lelaran kecerunan konjugat sisa biasa; lelaran sapuan suku; persamaan integro-pembezaan linear 
Fredholm 

INTRODUCTION

The integro-differential equations (IDEs) have become 
progressively more important in numerical analysis 
for elaborating numerous problems of engineering and 
scientific fields, such as mechanics, physics, chemistry, 
astronomy, biology, potential theory, electrostatics, nano-
hydrodynamics and glass-forming processes (Kurt & Sezer 
2008; Rashed 2003; Ren et al. 1999; Wang & Lin 2005; 
Yalçinbaş & Sezer 2000). IDEs are functional equations that 
include an integral and derivatives of unknown function 
and they can be classified into Fredholm and Volterra types. 
In this paper, we focus on Fredholm types of first order 
integro-differential equations (IDEs) as follows

  (1)

where K(x,t) g(x) and p(x) are known functions: λ is 
the real parameter; and y(x) is the unknown function 
to be determined. The conditions for the existence and 
uniqueness of the solution of such problems have been 
investigated by Agarwal (1983) and Morchalo (1975). 
 In many application areas, it is necessary to use the 
numerical approach to obtain an approximation solution 
for solving the problem (1). Therefore to be solved by 
numerically, integral and differential parts in the problem 
(1) had to be discretized to generate the system of linear 
algebraic equations, which is the basic concept used by 
researchers. Recently, methods such as Taylor collocation 
(Karamete & Sezer 2002), quadrature-difference (Fedetov 
2009), Lagrange interpolation (Rashed 2003; Shahsaravan 
2012), Taylor polynomial (Yalçinbaş 2002), Wavelet-
Galerkin (Avudainayagam & Vani 2000), rationalized 
Haar functions (Maleknejad et al. 2004), Tau (Hosseini 
& Shahmorad 2003) and Generalised Minimal Residual 
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(Aruchunan & Sulaiman 2010) methods have been studied 
in solving of the problem (1). In this paper, quarter-sweep 
iteration concept applied on discretization schemes and 
followed by Conjugate Gradient for Normal Residual 
(CGNR) (Barrett et al. 1993) in solving problem (1).
 Profoundly, the proposed Quarter sweep iteration 
concept on CGNR is inspired by the concept of the 
half-sweep iterative method. In previous studies, this 
concept has been introduced by Abdullah (1991) via the 
explicit decoupled group (EDG) iterative method to solve 
two-dimensional Poisson equations. The basic idea of 
the half-sweep iteration is to reduce the computational 
complexities during iteration process, where it will 
only consider nearly half of all interior node points in a 
solution domain. Consequently, the applications of half-
sweep iterative methods have been discussed in Abdullah 
and Ali (1996), Sulaiman et al. (2004a), Aruchunan and 
Sulaiman (2013, 2012a, 2012b, 2011a), Muthuvalu and 
Sulaiman (2011) and Muthuvalu et al. (2013). In 2000, 
Othman and Abdullah extended the concept of half-
sweep iteration by introducing the quarter-sweep iterative 
method via the modified explicit group (MEG) iterative 
method to solve two-dimensional Poisson equations. 
Further studies to verify the effectiveness of the quarter-
sweep iterative methods have also been carried out 
(Aruchunan & Sulaiman 2011b; Aruchunan et al. 2014, 
2013; Muthuvalu & Sulaiman 2011; Sulaiman et al. 2009, 
2004b). Once again, the quarter-sweep iteration inherits 
the characteristic of half-sweep iteration in which its 
implementation process will consider approximately a 
quarter of all interior node points of the solution domain.
 The outline of this paper is organized in following 
way. In the next section, the formulation of the full-, 
half- and quarter-sweep iteration concept on CS-FD  
approximation equations will be elaborated. The latter 
section of this paper, discussion on the formulations of 
the FSCGNR, HSCGNR and QSCGNR methods and several 
numerical experiments will be carried out to emphasise 
the performance of the proposed CG iterative methods. 
An analysis on computational complexity is discussed 
on the following section and the conclusion is provided 
in the last section.

DISCRETIZATION SCHEME BASED ON COMPLEXITY 
REDUCTION APPROCHES

Figure 1 shows the finite grid networks in order to form 
the full-, half- and quarter-sweep concept on quadrature 
approximation equations.
 Based on Figure 1, the full-, half- and quarter-sweep 
iterative methods will compute approximate values onto 
node points of type  only until the convergence criterion 
is reached. Next, other approximate solutions at remaining 
points (points of the different type  and ) are computed 
by using the direct method (Abdullah 1991; Othman & 
Abdullah 2000).

DERIVATION OF QUARTER-SWEEP COMPOSITE 
SIMPSON’S SCHEME

Aforementioned in the first section, the integral term in 
(1) will be discretized by CS scheme based on quadrature 
method to construct an approximation equation. In general, 
the quadrature formula can be defined as follows:

  (2) 

where tj (j = 0, 1, …, n) are the abscissas of the partition 
points of the integration interval (a, b] or quadrature 
(interpolation) nodes. The standard simpson’s  in (2) 
will be modified by combining the half- and quarter-sweep 
iteration concepts as explained in this section. Therefore, 
the application of the half- and quarter-sweep iteration 
concepts, (2) can be illustrated as follows:

 

 (3)

where the constant step size, h is defined as:

 
and n is the number of subintervals in the interval (0, 
1). Meanwhile, the value of p corresponds to 1, 2 and 4 
which represents the full-, half- and quarter-sweep cases, 
respectively.

DERIVATION OF QUARTER-SWEEP FINITE 
DIFFERENCE’S SCHEME

In order to discretize differential terms in (1), the finite 
difference methods are applied to form an approximation 
equation. Therefore, for node points i = 1, 2, n – 1, the 

FIGURE 1. a), b) and c) shows the distribution of uniformly node 
points for the full-, half- and quarter-sweep cases, respectively
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central difference scheme is applied. The general form of 
the central difference scheme is as follows:

  (4) 

 Nevertheless at the point xn, this work will propose 
the second order backward difference scheme as follows:

  (5)

where   is the size interval between nodes. Both (4) and 
(5) have the same order of the truncation error. However, 
the truncation error is mostly under our control because 
we can choose the number of terms from the expansion of 
Taylor series. In order to obtain the finite grid work network 
for formulation of the full-, half- and quarter-sweep finite 
difference approximation equations over (1), (4) and (5) 
need to be rewritten in general form as:

  (6)

 Again the value of p corresponds to 1, 2 and 4 
which represents the full-, half- and quarter-sweep cases, 
respectively.

FIRST ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL 
EQUATIONS APPROXIMATION

In solving LFIDE in (1), combination of proposed 
discretization schemes (3) and (6) will be applied to 
the integral and differential parts, respectively, to form 
approximation equations. In general, formulation of the 
full-, half- and quarter-sweep approximation equations 
based on quadrature-difference method for LFIDE can be 
represented in the form as follows,

 (7) 

 The linear system generated either by the full-, half- 
and quarter-sweep approximation equation can be simply 
shown as:

  (8)

where, 

 

in which,

 ai,i = –2hPi – 2hAi Ki,i,  bi,j = 1 – 2hA jKi,j, 

 ci,j = –1–2hAjKi,j,  di,j = –2hAjKi,j,  

 ei,j = –4 – 2hAjKi,j,  ħi,j = –3 – 2hPi – 2hAi Ki,i.
 

 Obviously E is a dense and non-symmetric coefficient 
matrix. 

FORMULATION OF CONJUGATE GRADIENT FOR NORMAL 
EQUATION (CGNR) METHOD

Apparently, the coefficient matrices for (1) are 
nonsymmetric dense matrix, thus the standard conjugate 
gradient (CG) iterative method does not work for this type 
of matrices. This is because, the CG algorithm is best known 
for solving symmetric positive definite linear systems 
(Barrett et al. 1993). Therefore, to find a solution for the 
generated linear systems, (8) will be multiplied by the 
transpose of the coefficient matrix, E to form symmetric 
positive definite linear system as follows, 

  (9)

where, now the coefficient matrix ET E is symmetric 
positive definite and the linear system (9) is called as 
conjugate gradient normal equations (CGNR). The (9) can 
also be simplified as follows, 

  (10)
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where,

 

 After convergence, additional calculations are required 
for proposed CGNR iterative methods to compute the 
remaining points. Therefore, average values are considered 
to calculate the remaining points as follows,
i). Half-sweep case 
 
 yi = 
  

ii). Quarter-sweep case

 yi = 
  

 
 Whereas, to compute the value for points of type   is,   

 and the value for points of types 

 is, 

NUMERICAL TREATMENTS AND DISCUSSION

In order to evaluate the performances of the family of 
CGNR iterative methods described in the previous section, 
numerical experiments were carried out from two problems 

of linear Fredholm integro-differential equations. Both 
problems are classified as well posed equations. 

Problem 1 (Kajani & Vencheh 2007): 

Consider the type linear FIDE of first order

  (11)

with initial condition

 y(0) = 0, 

and the exact solution is:

 y(x) = ln(x+1). 

Problem 2 (Kajani & Vencheh 2007):

Consider the exponential type linear FIDE of first order

  (12)

with initial condition:

 y(0) = 1, 
 

Algorithm 1 shows the proposed QSCGNR iterative method based on (1)

Algorithm 1: QSCGNR methods
1.  Initializing all the parameters r, d, α, β, h, E*, K, f and set k = 0 
2.  for i = 4, 8, …, n – 8, n – 4, n,  Compute

i. 

ii. 

iii. 

iv. 

v. 

vi. 
iv. Check the convergence. If the converge criterion is satisfied, If the error 

of tolerance If   go to Step 3. Otherwise, repeat the steps 

ii to vi until converges.
3.  End
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where its exact solution is given as:

 y(x) = cos(2πx).

 To validate the efficiency of the method, three 
parameters are considered in numerical comparison such 
as number of iterations, execution time and maximum 
absolute error. As control comparison, standard or full-
sweep conjugate gradient normal equations (FSCGNR) 
iterative methods is used as a control method. In addition, 
the results of standard Gauss-Seidel (GS) iterative 
method also presented to observe the performance and 
to demonstrate a broad analysis on the proposed method. 
All the simulations were implemented by a computer 
with processor Intel(R) Core(TM) 2 Duo CPU 2.4 GHz 
and the algorithms codes were written in C programming. 
Throughout the simulations, the convergence test 
considered the tolerance error, ε = 10–10 and carried out on 
several different sizes on n. The numerical results of (1) 
and (2) have been recorded in Tables 1 and 2, respectively.
 Table 3 shows percentage reduction for HSCGNR and 
proposed QSCGNR compared with FSCGNR. Based on the 
numerical results in Table 3, the number of iterations has 
decreased nearly 50 and 75% corresponding to HSCGNR 
and QSCGNR, respectively, compared with FSCGNR. 
Whereas, the execution time has reduced in the range 
of 75 and 90% for HSCGNR and QSCGNR, respectively, 
associated to FSCGNR iterative method. In term of 
accuracy, the QSCGNR slightly decreased as mesh size 
increases compared with FSCGNR and HSCGNR. This is 

because, the remaining points calculation are carried 
out based on average values. However, the accuracy of 
proposed method for both problems is in good agreement 
compared with the other existing methods. 

COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the FSCGNR, HSCGNR 
and QSCSNR iterative methods have been conducted to 
estimate the quantity of the computational work for each 
arithmetic operation performed per iteration for each 
iterative method. Based on Algorithm 1, the estimation 
in computing a value for each node point in the solution 
domain, the number of addition/subtractions (ADD/SUM) 
involved is  while the multiplications/ 

divisions (MUL/DIV) is  The total 
numbers of arithmetic operations per iteration for the 
FSCGNR, HSCGNR and QSCGNR iterative methods in solving 
(1) have been summarized in Table 4.

CONCLUSION

In this paper, we applied the QSCGNR method based on 
the corresponding CS-FD to solve first order linear FIDEs. 
Based on numerical simulations, it clearly demonstrates 
that there are promising improvements in number of 
iterations and execution time with implementing a QSCGNR 
iterative method compared to the FSCGNR and HSCGNR 
methods. Overall, the numerical results demonstrated that 

TABLE 1. Comparison of number of iterations, execution time and maximum absolute error for 
the GS and family of CGNR iterative methods for (1)

Methods
Number of iterations 

Mesh size
60 120 240 480 960

GS
FSCGNR
HSCGNR
QSCGNR

1173
90
46
23

7869
164
85
44

16228
294
146
74

82314
558
276
140

222102
1096
544
269

Methods
Execution time (s) 

Mesh size
60 120 240 480 960

GS
FSCGNR
HSCGNR
QSCGNR

312.13
0.26
0.12
0.04

1326.89
0.78
0.29
0.14

5350.32
3.58
1.31
0.76

14369.12
24.17
6.75
2.32

109887.15
201.86
64.2
8.19

Methods
Maximum absolute error

Mesh size
60 120 240 480 960

GS
FSCGNR
HSCGNR
QSCGNR

2.208E-04
9.120E-04
7.194E-04
1.376E-03

8.211E-05
1.557E-05
9.120E-05
7.194E-04

4.362E-05
5.297E-05
1.557E-05
8.681E-05

8.366E-06
7.445E-06
5.297E-05
1.557E-05

6.012E-07
8.151E-07
7.445E-06
5.297E-06
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TABLE 3. Percentage reduction of number of iterations and execution time of tested 
methods relative to FSCGNR methods in solving (1) and (2)

Problems Methods Number of iterations (%) Execution time (%)
1 HSCGNE

QSCGNE
48.17 - 50.54
73.17 - 75.46

78.77 - 95.94
53.84 - 72.07

2 HSCGNE
QSCGNE

49.15 - 50.73
72.79 - 75.34

51.78 - 75.10
82.14 - 93.57

TABLE 4. Number of arithmetic operations per iterations involved based on 
family of CGNR methods for both problems

Methods Arithmetic operations per node
ADD/SUB MUL/DIV

FSCGNE

HSCGNE

QSCGNE

TABLE 2. Comparison of number of iterations, execution time and maximum absolute error
 for the GS and family of CGNR iterative methods for (2)

Methods
Number of iterations

Mesh size
60 120 240 480 960

GS
FSCGNR
HSCGNR
QSCGNR

1268
146
74
36

9637
272
134
74

18928
468
238
122

90228
924
468
236

246091
2259
1130
568

Methods
Execution time (s)

Mesh size
60 120 240 480 960

GS
FSCGNR

CGNR
QSCGNR

425.69
0.56
0.27
0.10

5324.21
1.71
0.52
0.21

55324.20
7.82
2.41
1.24

155159.78
44.25
11.27
3.98

873214.21
286.20
71.26
18.38

Methods
Maximum absolute error

Mesh size
60 120 240 480 960

GS
FSCGNR
HSCGNR
QSCGNR

3.584E-04
3.593E-04
1.462E-03
3.923E-03

6.235E-04
8.901E-05
3.593E-04
1.462E-03

2.378E-05
2.214E-05
8.901E-05
3.593E-04

4.331E-05
5.523E-06
2.214E-05
8.901E-05

1.203E-06
1.379E-06
4.562E-06
2.214E-05

the quarter-sweep iteration concept in association with the 
CGNE iterative method is superior and it has reduced the 
computational complexity significantly.
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