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ABSTRACT

Currently, oxidative stress (0S) has become a major interest in point of basic science and clinical research. The imbalance
between generations and clearances of oxidants leads to 0S. Oxidants are mainly composed of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) which are manifested as oxidized macromolecules causing deleterious effects
in several organs. Lipid, protein and DNA oxidation products can provide extensively approach of potential oxidative
stress biomarkers. 0S leads to the fundamental cellular and tissue damages and consequence effect to various organs or
systems. This review emphasizes the systemic pathology induced by 0S that particularly affect to specialized organs or
systems including the nervous system, the cardiovascular system, the lung, the liver and the kidney.
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ABSTRAK

Dewasa ini, tekanan oksidatif (0S) telah menjadi salah satu kajian yang menarik perhatian dalam sains asas dan
penyelidikan klinikal. Ketidakseimbangan antara generasi dan kelegaan oksida membawa kepada 0S. Oksidan
terutamanya terdiri daripada spesies reaktif oksigen (ROS) dan spesies nitrogen reaktif (RNS) yang dimanifestasikan
sebagai makromolekul teroksida menyebabkan kesan yang merosakkan ke dalam beberapa organ-organ. Lipid, protein
dan produk pengoksidaan DNA boleh memberikan pendekatan menyeluruh potensi penanda biologi tekanan oksidatif.
0S boleh membawa kepada kerosakan sel dan tisu dan memberi kesan kepada pelbagai organ atau sistem. Kajian ini
menekankan patologi sistemik yang disebabkan oleh 0S terutamanya memberi kesan kepada organ atau sistem khusus

termasuk sistem saraf, sistem kardiovaskular, paru-paru, hati dan buah pinggang.

Kata kunci: Spesies nitrogen reaktif; spesies oksigen reaktif; tekanan oksidatif

INTRODUCTION

Oxidative stress (0S) has increasingly become a major
interested point of basic science and clinical research.
0s is conceptually defined as the imbalance between
generations and clearances of oxidants (Figure 1). As
shown in Table 1, oxidants are composed of reactive free-
radical and radical including reactive oxygen species (ROS)
and reactive nitrogen species (RNS) which are manifested
by several macromolecules especially lipid, protein
and DNA causing deleterious effects in several organs
(Arnouk et al. 2011; Bhimaraj & Tang 2012; Brzdska et
al. 2011; Matsubara et al. 2015; Rac et al. 2015). ROS are
composed of superoxide radical (O,"), hydroxyl radical
("OH), hydrogen peroxide (H,0,), peroxyl radical (RO,’),
alkoxyl radical (RO"), hydroperoxyl radical (HO,), singlet
oxygen and ozone. RNS include nitric oxide (‘NO), nitrogen
dioxide ('NO,), nitrous acid (HNO,), dinitrogen tetroxide
(N,0O,), dinitrogen trioxide (N,0O,), peroxynitrite (ONOO"),
peroxynitrous acid (ONOOH), alkyl peroxynitrites (ROONO)
and nitryl chloride (NO,CI). Oxidizing agents can be
produced by both endogenous source (inflammatory cells,
fibroblast, epithelial cells, endothelial cells, respiratory
chain, xanthine and NADPH oxidase) and exogenous source
(cigarette smoke, exogenous toxins, pollution, radiation,

carcinogens and drugs) (Bargagli et al. 2009; Choi et al.
2014; Nomura et al. 2014; Nourazarian et al. 2014). Under
normal physiological condition, oxidants are removed
through antioxidant defense mechanism. If incompletely
cleared by antioxidants, oxidants will caused accumulation
of 0s. Inefficiency and insufficiency of antioxidant defense
system are concerned in some pathological conditions
induced by 0S (Gao et al. 2009; Luchese et al. 2009;
Mathy-Hartert et al. 2008; Palipoch 2013; Palipoch &
Punsawad 2013).

As shown in Figure 2, risk factors which are
related to Os-induced pathologies include alcohol
consumption, cigarette smoking, diet, gender, geographic
location specifically at high altitude and occupation.
Alcohol metabolism is linked to ROS/RNS generations
leading increased oxidative stress biomarkers such as
malondialdehyde (MDA) and 4-hydroxynonenal (HNE)
and decreased antioxidative defense systems (Das &
Vasudevan 2007; Kim et al. 2015). Cigarette smoking
causes injury to the cardiovascular, pulmonary and other
OS related diseases including infertility in men (Elshal
et al. 2009; Kim et al. 2014; Lee et al. 2015; Saleh et al.
2002). Consumption of high fat diet causes OS through
overproduction of ROS resulting in hepatic oxidative
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FIGURE 1. General concept of oxidative stress (a) Normal condition is indicated the balance
between oxidant production and antioxidant defense system and (b) OS is demonstrated the
imbalance between generation and clearance of oxidant

TABLE 1. Main reactive oxygen species and reactive nitrogen species
(Bargagli et al. 2009)

Reactive oxygen species (ROS)

Reactive nitrogen species (RNS)

Superoxide radical (O,")
Hydroxyl radical ("OH)
Hydrogen peroxide (H,0,)
Peroxyl radical (RO,’)
Alkoxyl radical (RO")
Hydroperoxyl radical (HO,")

Nitric oxide ("NO)
Nitrogen dioxide (NO,)
Nitrous acid (HNO,)
Dinitrogen tetroxide (N,O,)
Dinitrogen trioxide (N,0,)
Peroxynitrite (ONOO")

Singlet oxygen Peroxynitrous acid (ONOOH)
Alkyl peroxynitrites (ROONO)
Nitryl chloride (NO,CI)
Risk factors

Lifestyles ¢.g., alcohol consumption and

cigarette smoking

Diet e.g., high fat diet

Geographic location e.g., high altitude

Gender

Occupation e.g., heavy metal-exposed

workers

v v
Overwhelm producti Inefficiency and insufficiency of
of ROS/RNS antioxidant defense system

[

|

Oxidative stress

|

Systemic pathology

FIGURE 2. Risk factors related with OS-induced pathologies

damage, thus antioxidant supplementations are good
beneficial choices (Feillet-Coudray et al. 2009; Yang et
al. 2008). Gender differences in 0OS are shown in several
diseases such as coronary artery disease (Vassalle et al.

2008) and hypertension (Ward et al. 2004). Exposure to
high altitude causes hypoxia which is associated with
0s and resembles ischemia/reperfusion injury by either
increased ROS/RNS production or weak antioxidant defense



system (Dosek et al. 2007; Lundby et al. 2003). In addition,
workers who are exposed to heavy metals demonstrated
increased OS in their system (Gurer-Orhan et al. 2004).

OXIDATIVE STRESS BIOMARKERS

Oxidative stress biomarkers are the measurable biologically
produced change in the body connected with pathology
induced by 0S (Table 2). Lipid, protein and DNA oxidation
products provide extensively approach of potential
biomarkers (Blumberg 2004; Kurutas et al. 2015; Zhong &
Yin 2014). Currently, lots of methods exist that potentially
allow the measurement of oxidative stress status in the
blood, plasma and urine (Blumberg 2004; Kadiiska et al.
2011,2005; Kurutas et al. 2015; Parker et al. 2001). Lipid
peroxidation (LPO) is demonstrated to induce disturbance
of membrane function and integrity and modification of
proteins and DNA bases which has been implicated in the
pathogenesis of various diseases (Dziggielewska-Gesiak
et al. 2014; Etsuo 2009). Polyunsaturated fatty acids
are especially susceptible to oxidation and readily form
lipid hydroperoxides which ultimately give rise to a, 3
unsaturated aldehydes and other LPO products. These
aldehyde species exhibit toxicity by covalently modifying
nucleophilic moieties of proteins and DNA. MDA and HNE
are the most potential biomarkers of LPO (Ayala et al. 2014;
Sowell et al. 2005). MDA is the stable end product from the
oxidative degradation of polyunsaturated fatty acids (Ayala
et al. 2014; Horton & Fairhurst 1987) which are usually
correlated with the pathogenesis of various diseases such as
atherosclerosis, stroke and Graves’ disease (Cherubini et al.
2005; Duryee et al. 2010; Guerra et al. 2005; Kirisattayakul
et al. 2013; Wang et al. 2014). A second toxic messenger
of oxygen free radicals, HNE is the major aldehyde formed
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as consequence of the oxidation of n-6 unsaturated fatty
acids (Esterbauer et al. 1991) that is related to various
pathological conditions including age-related macular
degeneration (Kaarniranta et al. 2005), stroke (Cherubini
et al.2005) and liver diseases (Poli et al. 2008). Other LPO
potential biomarker is a complex family of compounds
produced from arachidonic acid, F2-isoprostanes which
provide a strong link to diseases associated with ischemia-
reperfusion, atherosclerosis and inflammation (Cracowski
et al. 2002; Ishii et al. 2010). Urinary excretions of
8-isoprostane-F2a. were significantly higher in children
with oxidative stress-related autism (Ming et al. 2005).
Oxidative damage to proteins especially susceptible amino
acid such as lysine, proline and threonine may results
in protein-bound carbonyl structures which are often
associated with protein denaturation, reduced solubility
and loss of biological function (Mehlhase & Grune 2002;
Stadtman & Levine 2003, 2000). These protein carbonyls
can be used as a representative biomarker of the protein
oxidation. During LPO, carbonyl groups may be introduced
into proteins by secondary reaction of aldehydes such as
MDA and HNE with nucleophilic side chains of amino acids
including cysteine, histidine and lysine (Dalle-Donne
et al. 2003). In addition, reactive carbonyl derivatives
such as ketoamines and deoxyosones can be affected by
amino residues with consequence of glycoxidation and
lipoxidation products (Stadtman & Berlett 1997). Protein
oxidation products are related with various OS-induced
pathologies including chronic periodontitis (Baltacioglu
et al. 2008), familial hypercholesterolemia (Pirinccioglu
et al. 2010), acute pancreatitis (Winterbourn et al. 2003),
Alzheimer’s disease (Korolainen et al. 2006), multiple
sclerosis (Miller et al. 2012) and myocardial infarction
(Paton et al. 2010). The level of oxidized DNA damage has

TABLE 2. Oxidative stress biomarkers and OS-related diseases

Biomarkers Targets of oxidation Examples of OS-related diseases References
8-hydroxy-2’- DNA Parkinson’s disease, rheumatoid (Dong et al. 2015; Kuo et al. 2007; Rall
deoxyguanosine arthritis, cancer, atherosclerosis and et al. 2000; Wu et al. 2004; Yasuhara et
(8-OHAG) diabetics al. 2007)
8-0x0-7,8- DNA Cancer, Alzheimer’s disease, aging (Eiberger et al. 2008; Moreira et al.
dihydroguanine and neurodegenerative diseases 2008; Protano et al. 2014; Radak et al.
(8-oxoGua) 2011)

Malondialdehyde Polyunsaturated Atherosclerosis, stroke and Graves’ (Cherubini et al. 2005; Duryee et al.
(MDA) fatty acids disease 2010; Guerra et al. 2005; Yoon et al.

4-hydroxynonenal
(HNE)

F2-isoprostanes

Protein carbonyls

n-6 unsaturated
fatty acids

Arachidonic acid

Lysine, proline and
threonine

Age-related macular degeneration,
stroke and liver diseases

Ischemia-reperfusion, atherosclerosis
and inflammation

Chronic periodontitis, familial
hypercholesterolemia, acute
pancreatitis, Alzheimer’s disease,
multiple sclerosis and myocardial
infarction

2015)

(Cherubini et al. 2005; Kaarniranta et al.
2005; Poli et al. 2008; Yang et al. 2014)

(Cracowski et al. 2002; Ishii et al. 2010;
Wan Ahmad et al. 2015)

(Baltacioglu et al. 2008; Korolainen
et al. 2006; Miller et al. 2012; Paton
et al. 2010; Pirinccioglu et al. 2010;
Winterbourn et al. 2003)
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been extensively used as an indicator of the occurrence
of 0s. The most commonly biomarkers of oxidative DNA
damage are 8-oxo-7, 8-dihydroguanine (8-oxoGua) and
2,6-diamino-4-hydroxy-5-formamidopyrimidine. LPO-
derived DNA adducts have been suggested as potential
biomarkers for oxidative stress to generate etheno-
purinone, propano-purinone and pyrimido-purinone DNA
base adducts (Blair 2008). Surprisingly, base excision
repair of oxidative purine modifications is vulnerable to
0s, while the nucleotide excision repair of pyrimidine
dimers is not (Eiberger et al. 2008). Oxidized DNA damage
induced by oxidative stress play a key role in human
carcinogenesis (Kryston et al. 2011) and has often been
linked to other pathological conditions such as Alzheimer’s
disease (Moreira et al. 2008), aging and neurodegenerative
diseases (Radak et al. 2011). Currently, several approaches
are applied for investigation as indicator of oxidative stress-
induced tissue damage such as microRNAs, cytokinesis
block-micronucleus (CBMN-cytome) assay and telomere
integrity assay (Prasad et al. 2015; Ren et al. 2015; Wang
et al. 2010).

OXIDATIVE STRESS-RELATED SYSTEMIC PATHOLOGY

Overwhelm production of oxidants and or inefficiency
and insufficiency of antioxidant defense system cause OS
leading to the fundamental cellular and tissue damages and
consequently affecting specialized organs or systems. This
review focused on the nervous system, the cardiovascular
system, the lung, the liver and the kidney.

PATHOLOGY OF THE NERVOUS SYSTEM

0S has been implicated in the pathogenesis of both
ischemic brain and neurodegenerative diseases including
Alzheimer’s disease (AD), Parkinson’s disease (PD) and
amyotrophic lateral sclerosis (ALS) (Uttara et al. 2009).
Due to high oxidative phosphorylation and low level of
endogenous antioxidants, the nervous system is more
susceptible to oxidative damage than any other organs
(Warner et al. 2004). As in ischemia, neuronal cells can
be damaged through many mechanisms that are glutamate
excitotoxicity, inflammation and 0S. Both excitotoxicity
and inflammation also cause OS in common (Dong et
al. 2009). Glutamate excitotoxicity activates NMDA
receptor or even Ca**-permeable AMPA receptor resulting
in toxic increase of Ca’* in cells (Nakka et al. 2008).
Ca*-dependent enzymes such as neuronal NOS (nNOS)
and Phospholipase A2 (PLA2) produce peroxynitrite
and superoxide anion damaging macromolecules and
mitochondria (Godinez-Rubi et al. 2013; Sun et al. 2007).
Mitochondrial dysfunction in brain even causes ROS/RNS
production. Additionally, brains contain a high percentage
of polyunsaturated fatty acids which are vulnerably
susceptible to interaction with ROS/RNS leading to LPO (Sun
et al. 2007). Inflammation which is the complex response
to harmful stimuli particularly cell damage recruits white
blood cells such as neutrophil releasing oxygen-free

radicals and proteolytic enzymes (Wang et al. 2006).
Matrix metalloproteinase destroys blood-brain barrier
leading to vasogenic brain edema which worsens cerebral
blood flow (Kahle et al. 2009). 0s causes the oxidation of
macromolecules including lipid, protein, RNA, and DNA
which consequence elicits various pathologies in nervous
system. Not only severe reduction of cerebral blood flow
in focal cerebral ischemia or ischemic reperfusion causes
reactive oxygen species but also mild reduction of cerebral
blood flow which is virtually no reperfusion like chronic
cerebral hypoperfusion can also generate reactive oxygen
species leading to neuronal death and impairments of
learning and memory (Dong et al. 2011; Koomhin et al.
2012; Xu et al. 2009). Extracellular amyloid plaques,
intracellular neurofibrillary tangles, amyloid-f3 peptide
(AP) accumulation and synapse loss can be found in AD
brains. The excessive release of AP in AD patients causes
0s via NMDA receptor-dependent mechanism (De Felice et
al.2007). AP generates ROS in a metal-catalyzed reaction
which damages neuronal membrane lipid, protein and
DNA ultimately, triggers neurodegeneration (Pimentel et
al. 2012). It induces 0S-mediated neuronal apoptosis by
eliciting a SAPK-dependent multiple regulation of pro-
apoptotic mitochondrial pathways involving both p53,
bcl-2 and pro-death BNIP3 genes (Tamagno et al. 2003;
Zhang et al. 2007). Inflammatory response also occurred as
the consequence of NOD-like receptor family pyrin domain
containing 1 (NLRP1) inflammasome-induced caspasel
activation (Tan et al. 2014). In addition, 0S induced by A3
may result in the impairment of astrocytic glutamate uptake
which also result in the increase of extracellular glutamate
supporting glutamate excitotoxicity-induced 0S (Matos et
al. 2012). pD is defined by death of dopaminergic neurons
in the substantia nigra pars compacta and is associated
with the deficiency of the neurotransmitter dopamine
in the corpus striatum. Etiology of the disease is still
obscured. a -synuclein aggregation is the typical feature
in extracellular space of substantia nigra (Pimentel et al.
2012). The aggregation may activate microglia respiratory
burst resulting in ROS production and causing dopaminergic
neuron degeneration (Zhang et al. 2005). Striatal OS was
increased in PD patients which is related with disease
severity, particularly in the contralateral striatum (Ikawa
et al. 2011). Postmortem brain tissues have suggested
that ROS/RNS are involved in neurodegeneration of PD
patients (Danielson & Andersen 2008). Depletion of GSH
levels and high levels of HNE and 8-hydroxyguanosine
are common in brain tissues of PD patients (Danielson &
Andersen 2008). NMDA receptor-dependent mechanism
may be involve in pathological mechanisms suggested by
alleviation of symptoms in PD animal model after NMDA
receptor antagonist applications (Dauer & Przedborski
2003). ALS is characterized by progressive injury and death
of lower motor neurons in the spinal cord and brainstem
and upper motor neurons in the motor cortex which leads
to muscle weakness, wasting and spasticity (Barber et al.
2006). Approximately 90% of all ALS cases are sporadic
disease, while 10% of individuals ALS are familial disease



(Menzies et al. 2002). Base on dying back hypothesis,
the pathology firstly occurs at presynaptic terminals and
0s takes a major contribution in pathogenesis (Pollari
et al. 2014). 0S contributes to motor neuron injury and
death by either increased ROS/RNS production or reduced
activity and levels of antioxidant defense system (Babu
et al. 2008). Alterations of copper and iron metabolism
undergo redox cycling and generate ROS and contribute
to the induction of cell death pathways (Carri™ et al.
2003). Mitochondrial oxidative damage contributes to
the pathogenesis of sporadic ALS (Murata et al. 2008).
Additionally, mitochondrial dysfunction has been linked
to the ALS variants of SOD1 (Shi et al. 2010). Mutations
in the copper and zinc-superoxide dismutase (SODI1)
gene implicate OS in the pathogenesis of familial ALS
(Catherine 1995). Moreover, aberrant accumulation of
AP42 in ALS spinal cord motor neurons is associated
with 0S which may play a role in the pathogenesis of
neurodegeneration in ALS (Calingasan et al. 2005).
Increased LPO and protein glycoxidation in the spinal cord
motor neurons and glial cells of sporadic ALS patients is
implicated in motor neuron degeneration (Shibata et al.
2001). Oxidative stress biomarkers are demonstrated in
high levels including LPO product, HNE, protein carbonyl
in spinal cord and motor cortex and oxidized DNA adduct,
8-hydroxy-2'-deoxyguanosine in whole cervical spinal
cord of sporadic ALS patients (Barber 2006). Glutamate
transporter dysfunction was shown in animal study of
ALS (Le Verche et al. 2011). In 2005, Rothstein found
that upregulation of glutamate transporter especially by
[-lactam antibiotics delayed neuronal death and muscle
strength in animal model of the fatal disease ALS (Rothstein
et al. 2005). It suggests that the contribution of glutamate
excitotoxicity also take a crucial role in pathogenesis. The
excitotoxicity observed in the model may be a cause of
reactive oxygen species production in the disease. Taken
together, the development of treatments focusing on OS in
both direct and indirect ways through other mechanisms
such as glutamate excitotoxicity and inflammation have
a promising future on both cerebral ischemia and other
neurodegenerative diseases.

PATHOLOGY OF THE CARDIOVASCULAR SYSTEM

Several cardiovascular diseases are resulted from
complications of atherosclerosis. Atherosclerosis is a
multifactorial disease which refers to the buildup of plaques
(fats and cholesterol) in arterial walls. It can affect any
artery in the body such as arteries in the heart, brain and
kidneys which eventually restricts blood flow. Several risk
factors including hypertension, hyperlipidemia, diabetes
and cigarette smoking are involved in the development
of atherosclerosis. Underlying mechanisms contributing
to the disease process are not completely understood.
Previous studies believed that OS plays a crucial role in the
pathogenesis of atherosclerotic disease. The generation of
ROS and oxidation of low density lipoprotein (LDL) play
the key roles in the oxidative signaling pathway to vascular
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inflammation from the initiation of fatty streak development
to plaque rupture (Cipollone et al. 2007). Oxidative DNA
damage biomarker, 8-Hydroxy-2’-deoxyguanosine (8-
OHAG) were found to be at high level in aorta fragments
taken from patients suffering from severe atherosclerotic
lesions (De Flora et al. 1997). In type 2 diabetic patients,
the accumulation of 0S-associated gene polymorphisms
of several enzymes including myeloperoxidase, human
paraoxonase and NAD(P)H oxidase is likely associated
with the progression of carotid atherosclerosis (Katakami
etal.2009). Lipid peroxidation marker, 8-iso-prostaglandin
F2 is possible linked with alterations of arterial elastic
properties which are the sign of early vascular damage in
atherosclerosis (Kals et al. 2006).

PATHOLOGY OF THE LUNG

0s is one of the most important causes of various lung
diseases including chronic obstructive pulmonary
disease (COPD), bronchopulmonary dysplasia, pulmonary
sarcoidosis, asthma, idiopathic pulmonary fibrosis (IPF) and
lung cancer. COPD is one of the leading causes of morbidity
and mortality worldwide which is primarily associated
with cigarette smoking. Excessive OS contributes to
pathophysiology of COPD. Os-triggered apoptosis of
alveolar structural cells, including epithelial cells and thus
may be an underlying mechanism in the development of
CcoPD (MacNee 2001). High oxygen level, lower antioxidant
defense, infection and inflammation susceptibility and
excess free iron are the risk factors contributing to OS.
A lower antioxidant is more susceptible to OS because
of uncontrolled formation of free radicals. Exposure to
infection and inflammation activated phagocytic cells
and eventually release large amounts of ROS. Iron is the
transitional metal which is found abundant in human
body. It is the important metal to produce toxic hydroxyl
radical by participating in the Fenton reaction (H,O, + Fe**
— OH + OH" + Fe*). In preterm infants, these factors
contributed to 0S which triggers permanently molecular
and cellular changes of lung leading to chronic lung disease
or bronchopulmonary dysplasia (Pitkdnen & Hallman
1998; Saugstad 2003). Idiopathic pulmonary fibrosis is
a fatal fibrotic disorder characterized by an abnormal
accumulation of fibroblast/myofibroblast resulting in
severe dyspnea and impairment of pulmonary function.
Serum levels of OS are increased in IPF patients suggested
that OS plays a possible role in the pathogenesis of IPF
(Daniil et al. 2008). A potent stimulator of myofibroblast
differentiation and proliferation, TGF- 1 is believed to play
a substantial role for OS in IPF. Treatment with enzymatic
antioxidant such as extracellular superoxide dismutase can
inhibit activated TGF-P1 and the development of persistent
pulmonary fibrosis in animal model (Cui et al. 2011).

PATHOLOGY OF THE LIVER

The important cause of alcoholic liver disease is OS by
which ethanol induces increased mitochondrial ROS
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production in the liver. Patients with alcoholic liver disease
exhibit the high levels of serum oxidative stress biomarker,
MDA associated with the increase in severity of the disease
and demonstrated low levels of serum vitamins E and
C (Masalkar & Abhang 2005). The exact mechanism is
unknown. Bailey and Cunningham (2002) believed that
increased oxidant levels are linked with mitochondrial
metabolism through oxidative process and/or alteration
of mitochondrial electron transport chain. Moreover, ROS
might have the effect on inactivation of mitochondrial
proteins which would diminish mitochondrial function and
ultimately cause some deleterious effects to hepatocytes
in alcohol abusers (Bailey & Cunningham 2002). The
generation of ROS and RNS is stimulated by cytokine-
induced oxidative stress signals in hepatic parenchymal
cells and via the induction of Kupffer cells and inflammatory
cells. The shift in the balance of cytokines in hepatocytes
including tumor necrotic factor (TNF)-a, interleukin (IL)-13
and IL-6 also contributes to hepatic damage in alcoholic
hepatitis (Hoek & Pastorino 2002). Fatty liver disease
associated with chronic alcohol consumption or obesity/
type 2 diabetes is linked to mitochondrial defect. The
alterations of mitochondrial genome and proteome cause
loss of mitochondrial respiration, the inability to maintain
sufficient ATP concentrations and a further increased ROS
and RNS generation ultimately resulting in OS (Mantena et
al. 2008). Non-alcoholic liver disease includes a spectrum
of hepatic steatosis, steatohepatitis and fibrosis which is
also linked with 0S. Previous study demonstrated that the
transgenic Ren2 rats, harboring the mouse rennin gene
with elevated tissue Angiotensin II, developed significant
hepatic steatosis by 9 weeks of age and developed to
marked steatohepatitis and fibrosis by 12 weeks which are
associated with the increased levels of hepatic ROS and LPO.
After treatment with an angiotensin type 1 receptor blocker
or superoxide dismutase/catalase mimetic, hepatic indices
of steatosis, fibrosis and OS are attenuated (Wei et al. 2008).
Moreover, the development of hyperdynamic circulation
in portal hypertension is also associated with OS by impact
on function of vascular smooth muscle. Normally, ROS
and RNS are recognized as the regulatory molecules in
signaling pathways of normal vascular smooth muscle
cells depending on concentration, cellular compartment
of generation and access, nature of action and target site
of molecular species. However, their action depends on
cellular antioxidant status (Bomzon & Ljubuncic 2001).
The toxicity of chemotherapeutic agent such as cisplatin
also caused the liver damage which 0S was implicated in
the pathogenesis (Palipoch & Punsawad 2013; Palipoch
etal. 2014). Heavy metals such as lead nitrate can induce
0S in liver by increased LPO, decreased concentrations of
hepatic glutathione and decreased activities of enzymatic
antioxidants including catalase, glutathione reductase and
glutathione peroxidase in fish. Medicinal plant-derived
antioxidants are able to reduce hepatic pathology induced
by 0s in Pb(NO,),-exposed fish (Palipoch et al. 2011a,
2011b).

PATHOLOGY OF THE KIDNEY

In fish model, OS can cause various kidneys alterations via
increased oxidant production and decreased antioxidant
defense system (Palipoch et al. 2011a, 2011b). According
to Robbins et al. (2002), generation of ROS induced by
irradiation leads to nephropathy in rats via OS induction.
Detection of specific DNA oxidative stress marker, 8-OHdG
and localized kidney irradiation illustrates a marked,
dose-independent increase in glomerular and tubular cell
nuclear DNA oxidation which is associated with persistent
and chronic oxidative stress. Moreover, a relation between
chronic oxidative stress and tubulointerstitial fibrosis in
irradiated kidney remains to be established. Antioxidant
such as superoxide dismutase is demonstrated as an
effective approach in the treatment of kidney fibrosis
induced by irradiation (Robbins et al. 2002). Aykanat et
al. (2011) believed that chronic kidney disease especially
in the uremic state and dialysis treatment is believed to
cause the imbalanced antioxidant defense system and the
increased ROS production consequently leading to OS.
Pediatric patients with chronic kidney disease including
pre-dialysis, regular hemodialysis and received kidney
transplantation exhibit increased oxidative DNA damage
using comet assay (Aykanat et al. 2011). Pawlak et al.
(2007) indicated that uremic patients illustrated with
impaired renal function and duration of dialysis treatment
are associated with increased of 0S. Compared to healthy
control, the increased Cu/Zn superoxide dismutase is
found in peritoneal dialysis and maintenance hemodialysis
patients. Antioxidant therapy might be a new method to
reduce intradialytic 0S (Pawlak et al. 2007).

CONCLUSION

0s has been implicated in various pathologies via
underlying mechanism of increased ROS/RNS production
and/or decreased scavenging ability of antioxidant defense
system. Oxidants play the key role to oxidize several
macromolecules especially lipid, protein and DNA and
ultimately lead to injury of various organs or systems.
Detections of biomarkers including lipid, protein and
DNA oxidation products from blood and urine are the
important methods to measure oxidative stress status.
Future investigation will provided the effective approach
to prevent and or treat OS-associated diseases. Currently,
exogenous antioxidant supplementations from various
sources especially medicinal plants are believed to
ameliorate pathologies induced by Os.
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