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ABSTRACT

Forecasting of groundwater level variations is a significantly needed in groundwater resource management. Precise water 
level prediction assists in practical and optimal usage of water resources. The main objective of using an artificial neural 
network (ANN) was to investigate the feasibility of feed-forward, Elman and Cascade forward neural networks with different 
algorithms to estimate groundwater levels in the Langat Basin from 2007 to 2013. In order to examine the accuracy of 
monthly water level forecasts, effectiveness of the steepness coefficient in the sigmoid function of a developed ANN model 
was evaluated in this research. The performance of the models was evaluated using the mean squared error (MSE) and 
the correlation coefficient (R). The results indicated that the ANN technique was well suited for forecasting groundwater 
levels. All models developed had shown acceptable results. Based on the observation, the feed-forward neural network 
model optimized with the Levenberg-Marquardt algorithms showed the most beneficial results with the minimum MSE 
value of (0.048) and maximum R value of (0.839), obtained for simulation of groundwater levels. The present research 
conclusively showed the capability of ANNs to provide excellent estimation accuracy and valuable sensitivity analyses.
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ABSTRAK

Ramalan variasi paras air bawah tanah adalah sangat diperlukan dalam pengurusan sumber air bawah tanah. Ketepatan 
ramalan paras air dapat membantu penggunaan secara praktikal dan optimum sumber air tanah. Objektif utama 
penggunaan rangkaian neuron buatan (ANN) adalah untuk mengkaji kebolehan suap ke hadapan, Elman dan Cascade 
rangkaian neuron ke hadapan dengan algoritma yang berbeza dalam menentukan paras air tanah di Lembangan Langat 
dari 2007 hingga 2013. Untuk memastikan ketepatan ramalan paras air tanah bulanan, keberkesanan pekali kecuraman 
dalam fungsi sigmoid model ANN yang dibangunkan dinilai dalam kajian ini. Prestasi model dinilai berdasarkan purata 
ralat kuasa dua (MSE) dan pekali korelasi (R). Keputusan menunjukkan bahawa teknik ANN adalah sangat sesuai digunakan 
dalam meramal paras air bawah tanah. Semua model yang dibangunkan menunjukkan keputusan yang boleh diterima. 
Berdasarkan pemerhatian, model rangkaian neuron ke hadapan yang dioptimumkan dengan algoritma Levenberg-
Marquardt menunjukkan keputusan yang paling bermanfaat dengan nilai minimum MSE (0.048) dan nilai maksimum R 
(0.839) diperoleh daripada simulasi paras air bawah tanah. Kajian ini secara muktamadnya menunjukkan keupayaan 
ANN dalam memberikan penganggaran ketepatan terbaik dan analisis sensitiviti bernilai.

Kata kunci: Paras air bawah tanah; rangkaian neuron buatan (ANN); simulasi

INTRODUCTION

Groundwater is one of the most important domestic, 
industrial and agricultural resources. It is a valuable 
natural resource, without which there could be no life 
on Earth. Predicting the level of water is a significant 
engineering problem. Therefore, appropriate management 
of water resources in general and groundwater specifically 
is extremely important for both the present and future 
decades. Consequently, to develop successful methods 
to accurately estimate groundwater levels and its quality 
(Ashraf et al. 2011; Mohanty et al. 2010; Verma & Singh 
2013). In previous decades, an artificial neural network 
(ANN) was applied as strong tools and accurate solutions to 
many of the extremely difficult challenges faced by water 
sciences and hydrology, and this usage has increased. The 

ANN model is certainly a model, which can be treated as a 
global approximator and therefore is the best for dynamic 
nonlinear system modeling (ASCE Task 2000). The growing 
AI approaches have the ability to fill the gaps of the 
measurements and to forecast future values without long 
observation data (Karimi et al. 2013). ANNs are now widely 
applied in a broad range of fields. Concepts and applications 
of ANN models in hydrology have been discussed by many 
researchers (ASCE Task 2000, Govindaraju & Rao 2000; 
Hussain at al. 2014). Kin et al. (2001) employed ANN 
technique to simulate precipitation, Selventhiran et al. 
(2012) used ANNs for river flow forecasting, Khaki et al. 
(2015) developed ANN models to prediction the water 
quality parameters, Singh et al. (2004) employed ANNs to 
recognize unidentified groundwater contamination sources 
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at several locations utilizing erroneous measurement 
data, Mohanty et al. (2002) developed neural networks 
to simulate the chemical oxygen demand reduction and a 
wide range of ANN applications in water use and quality 
(Mishra et al. 2007; Singh et al. 2009; Talebizadeh et al. 
2010; Yusoff et al. 2013; Zhang et al. 2002).
 The forecasted result is useful to create awareness 
among residents and furthermore, will result in increased 
attention from the state and central government to develop 
and manage the groundwater policy for this area. ANNs 
were carried out to effectively forecast groundwater levels 
in confined sand and gravel aquifer with several different 
architectures of neural networks in the Langat Basin, 
Malaysia. 

METHODS

ARTIFICIAL NEURAL NETWORKS (ANNS)

The composition of an ANN is influenced by the human 
nervous system. ANNs are a combination of three separate 
types of layers which are one input layer, one or more 
hidden layers and one output layer (Figure 1). The data 
running paradigm consists of many interconnected nodes 
(neurons) in which a complicated input structure is 
mapped to a related output structure (Hagan et al. 1996). 
The main benefit of an ANN is that without having a priori 
knowledge of the actual physical procedure as well as the 
precise connection among sets of input and output data, if 
they are identified as existing, the network can be trained 
to learn such a input-output relations. The ability to train 
and learn the output from a given input is an interesting 
property of ANNs to explain significant-scale arbitrarily 
complex behaviors of nonlinear systems (Maier & Dandy 
2000). ANNs are distinguished by their architecture, 
which depicts the structure of connections among nodes, 
its approach to identifying connection weights and the 
activation function (Fausset 1994). In this research, three 
different ANN architectures were utilized together with 

four ANN training algorithms: the Levenberg-Marquardt 
(LM) algorithm, the gradient descent with momentum and 
adaptive learning rate back propagation (GDX) algorithm, 
the scaled conjugate gradient (SCG) algorithm, and the 
resilient back propagation (RP) algorithm have been used 
for the estimation of groundwater levels (Saghravani et 
al. 2013).

FEED-FORWARD NEURAL NETWORK (FNN)

One of the most well-known neural networks is the 
feed-forward neural network (FNN). FFNs were utilized 
effectively in various issues since the appearance of the 
error back propagation learning algorithm. The back 
propagation algorithm modifies the weights according to 
the idea of modifying the MSE. The main advantage of feed-
forward neural networks is that they are easy to manage, 
which enables them to approximate any kind of input and 
output mapping, as established by Hornik et al. (1989). 
The weighting of the nodes is key to the training of the 
FNN. The difference between the network’s output and the 
predicted result is determined at each iteration. The training 
process will become manageable, by differentiating the 
neural network with respect to the nodes. 

ELMAN NEURAL NETWORK (RNN)

The Elman neural network (recurrent neural network) is 
characterized by an additional feedback cycle from the 
output of a hidden layer to the input of this layer, which 
makes up the context layer that maintains information 
between observations (Elman 1990). The effect of 
processing in a previous period stage can be employed in 
the present period stage. This quality of the Elman network 
provides an extremely important benefit, particularly in 
real-time applications to follow the dynamic change of 
water variables in practice. These recurrent networks 
may have an unlimited memory level and so discover 
relationships through time as well as through the immediate 
input space (Haykin 1999). 

FIGURE 1. Non-linear model of a neuron
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CASCADE FORWARD NETWORK (CFN) 

The cascade back propagation algorithm is the basis of 
a conceptual pattern intended for accelerated learning 
in ANNs. The CFN neural networks are similar to feed-
forward networks, but consist of a weighted relationship 
to the input to each layer and also through each layer to 
the effective layers (Lashkarbolooki & Shafipour 2012). 
Filik and Kurban (2007) identified which cascade forward 
back propagation technique can be more effective than 
feed-forward back propagation technique in these cases.

GRADIENT DESCENT WITH MOMENTUM AND ADAPTIVE 
LEARNING RATE BACK PROPAGATION (GDX)

This approach utilizes a common back propagation 
algorithm in order to compute derivatives of the 
performance cost function according to the changeable 
weights and biases of the network. This technique utilizes 
gradient descent with momentum to adjust each variable. 
For each stage of the modification, if performance reduces, 
the learning rate is enhanced. This is probably the simplest 
and most common way to train a network (Haykin 1999).

LEVENBERG-MARQUARDT (LM)

The Levenberg-Marquardt (LM) algorithm is essentially 
the neural network algorithm that is most used to update 
MLP weights and biases (Hagan & Menhaj 1994). The 
Levenberg-Marquardt approach is an optimization based 
on the classic Newton algorithm intended for obtaining the 
best solution to a minimization problem. This approach 
decreases the volume of oscillation in the learning process. 
It utilizes an approximation to the Hessian matrix within 
the following Newton such as weight update (Mohanty 
et al. 2010):

 xk+1 = xk – [JTJ + μI]–1JTe, (1)

where x is the weight of the neural network; J the Jacobian 
matrix of the performance criteria to be minimized; μ the 
scalar that controls the learning process; and e the residual 
error vector. 
 If the scalar μ is actually zero, that is simply Newton’s 
technique while using the approximate Hessian matrix. 
When μ is large the equation has a gradient descent 
with small step size. Newton’s technique is quicker as 
well as more precise to an error minimum; therefore the 
purpose should be to shift in the direction of Newton’s 
technique as fast as possible. Nevertheless, because of the 
excessive memory requirement, it can only be applied to 
small networks (Maier & Dandy 1998). However, many 
researchers have recently been using it effectively (Anctil 
et al. 2004; Coulibaly et al. 2000; Mohanty et al. 2010; 
Zulkifley at al. 2013).

RESILIENT BACK PROPAGATION (RBP)

As a local adaptive learning scheme, the algorithm resilient 
back propagation fulfills interesting batch learning in feed-

forward neural networks. Elimination of the detrimental 
effect of the size of the partial derivative on the weight 
step is a main principle of RBP. As a result, the sign of 
the derivative identifies the direction of the weighting 
update. In this method, for each weight individual update 
values which only indicate the size of the weight update 
(Riedmiller & Braun 1993). 

SCALED CONJUGATE GRADIENT (SCG)

The quadratic approximation to the error in the 
neighborhood of a point is defined by the scaled 
conjugate gradient (SCG) algorithm (Møller 1993). SCG is 
a second-order conjugate gradient algorithm, which helps 
to minimize a multi dimensional target function. Møller 
(1993) proved this theoretical foundation, which remains 
a first-order technique for the first derivative such as 
standard back propagation and discovered a premier way 
to local minimum for second-order techniques in second 
derivatives. SCG is fast algorithm and employs a step size 
scaling mechanism which avoids time-consuming line 
search per learning iteration (Karmokar et al. 2012). The 
SCG method presents super-linear convergence for most 
problems as confirmed by Møller (1993).

STUDY AREA AND MODEL APPLICATION

STUDY AREA

The selected well for modeling of groundwater fluctuations 
in the Langat Basin area is shown in Figure 2(a). Langat 
Basin is an important water catchment area, which provides 
the supply of raw water and other benefits for around 
one million people within the basin area. The geological 
condition of the groundwater is based on quaternary 
sediments, which consist of unconsolidated gravel, sand, 
silt and clay of the Simpang Formation in the Pleistocene 
and Gula and Beruas Formations in the Holocene (Mineral 
and Geosciences Department 2002). The range of annual 
precipitation is from 1585 and 2729 mm. The average 
humidity of the study area is estimated to be around 80%. 
The highest and lowest temperature reached in average 
during noon and night is 24 and 32oC, respectively.

MODEL APPLICATION

According to the water balance equation, changes in the 
amount of water within any hydrological system can 
be given in terms of the difference between inflow and 
outflow:

 X – Y = ΔS, (2)

where X shows inflow like precipitation; Y is outflow like 
surface run-off, evaporation, infiltration, groundwater flow; 
and ΔS shows water level variations. 
 Figure 2(b) displays the minimum, maximum and mean 
monthly rainfall in the study area during the investigated. 
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The maximum rainfall occurred between September and 
December with a mean of 433 mm. The highest amount 
of rainfall (480 mm) occurred in December 2012. The 
minimum rainfall occurred in February 2012 with a mean of 
94 mm. In addition the number of rainy days in a year varies 
from 140 to 210 days. Temperature has a major impact to 
the water budget as it increases evaporation (Te Chow et 
al. 1988). Monthly mean temperature measurements at the 
meteorological station in the study area are represented in 
Figure 3(a). A slight increasing trend is found in the values, 
which change steadily over the years as identified by the 
bold line in Figure 3(a). This minor trend is neutralized 
when compared with larger data sets where significant 
temperature variations over a long period of time could 
not be observed. Furthermore, the monthly evaporation and 
humidity in the Langat Basin are represented in Figures 
3(b) and 3(c), respectively. The average monthly relative 
humidity lies between 77 and 85% varying from place to 
place of the investigated area and from month to month. 
The minimum range of average relative humidity varies 
from 67% in February to 79% in November. The maximum 
range of mean relative humidity varies from 82% in June 

to 89% in November. In Peninsular Malaysia, the lowest 
relative humidity occurred on January and February while 
the relative humidity normally reaches it minimum on 
November (MMD 2013). Consequently, monthly values for 
the variations of evaporation, humidity, rainfall, minimum 
and maximum temperature and variations of water level, 
for 2007 to 2013, were identified and trained with ANNs 
in the present study. Therefore, the numbers of input and 
output data were arranged at five and one, respectively. The 
transfer function in the hidden layer was set to sigmoid, 
because it was found in the initial evaluation that the 
sigmoid function provides better outcomes than other 
transfer functions, although the pure linear transfer function 
has been utilized in the output layer. Trial and error is the 
most effective technique to identify the number of neurons 
in the hidden layer (Sheela & Deepa 2013). The data were 
randomly divided into three sets: 70% of the data for model 
training, 15% for model testing and 15% data for model 
validity. 
 Input and output data have been normalized to give 
them equal attention in the training process. In order to 
consider the effectiveness of each network and its ability 

a)

b)

FIGURE 2. (a) Location of the boreholes in the Langat Basin and (b) Average of 
monthly rainfall from 2007 to 2013 in the study area
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to simulate precisely, two different criteria are employed. 
The first one was the mean square error (MSE) calculated 
by:

 MSE =  (3)

where y is the observed data;  the computed data; N and 
the number of observations. MSE reflects the difference 
between the observed and computed values; the lower the 
MSE, the more precise the simulation.
 The second one was the correlation coefficient 
between network result and network target outputs in 
three training, testing and validation groups were used and 
calculated as follows:

 R =  (4)

RESULTS AND DISCUSSION

Forecasting of the groundwater level was carried out for 
various networks from 2007 to 2013 in the Langat Basin, 
Malaysia. Figure 4 shows the maximum (500 mm) and 
the minimum (27 mm) of precipitation between December 
of 2012 and June 2009. In general, the groundwater level 
increases by rainfall enhancement. The best condition 
occurred in September 2010 when the groundwater level 
reached its highest level (roughly 1 m) and after a large 
rainfall event which is 470 mm. After a prolonged period of 

FIGURE 3. (a) Average monthly temperature (oC), (b) monthly evaporation (mm) 
and (c) monthly humidity (%) in Langat Basin



24 

TABLE 1. Comparison of performance of models developed for all, training, testing and validation periods

  
 

  All Training Testing Validation
Structure Epoch R MSE R MSE R MSE R MSE

FNN
LM

GDX
SCG
RP

(8,10,1)
(8,10,1)
(7,9,1)
(7,9,1)

500
500
500
500

0.839
0.672
0.708
0.78

0.048
0.087
0.072
0.064

0.998
0.648
0.915
0.865

0.0004
0.097
0.021
0.042

0.443
0.645
0.463
0.654

0.265
0.087
0.367
0.119

0.642
0.802
0.802
0.725

0.136
0.043
0.091
0.117

RNN
LM

GDX
SCG
RP

(8,9,1)
(8,9,1)
(8,10,1)
(8,10,1)

500
500
500
500

0.761
0.692
0.694
0.737

0.086
0.107
0.104
0.073

0.976
0.694
0.696
0.828

0.008
0.118
0.109
0.049

0.477
0.494
0.488
0.669

0.314
0.112
0.125
0.084

0.59
0.917
0.761
0.604

0.143
0.051
0.057
0.178

CFN
LM

GDX
SCG
RP

(9,11,1)
(9,11,1)
(8,11,1)
(9,11,1)

500
500
500
500

0.811
0.629
0.751
0.787

0.058
0.088
0.081
0.061

0.95
0.754
0.845
0.848

0.015
0.066
0.049
0.055

0.5
0.526
0.546
0.592

0.165
0.19
0.14
0.112

0.743
0.478
0.532
0.546

0.095
0.153
0.117
0.036

FIGURE 4. Monthly precipitation (mm) and depth to groundwater level (m) for observation 
well from 2007 to 2013 in Langat Basin

low rainfall (< 300 mm per month), it reached to one of the 
lowest levels (2.5 m) in February 2011. All three networks 
derive a parameter configuration and optimum network, by 
means of trial and error. Table 1 shows the evaluation of all 
three networks for the observation well. Achievements by 
the cascade forward network trained with the Levenberg-
Marquardt algorithm show the best overall performance 
as is shown in Table 1 and by the feed-forward network 
trained with the same algorithm known as the second best 
is shown by their small MSE. A recurrent neural network 
trained with the gradient descent algorithm was considered 
as the most unsuitable network. This may be interpreted 
that more complex training algorithms are required by RNN 
(Coulibaly et al. 2001). Figures 5-7 shows the evaluation 
of the ability of the ANN model compared with various 
networks that refer to the training step, which is displayed 
in the form of a scatter plot. Additionally, the groundwater 

level forecast of every model in the training phase to get the 
best input combination is shown in Figures 5-7 in the form 
of hydrographs. Moreover, Figure 8 shows the observed 
depths to groundwater and simulated ones per month and 
from 2007 to 2013. The depths to groundwater for all three 
networks by various training algorithms are compared with 
the observed groundwater levels and presented in Figure 
8. The observed and simulated groundwater levels for all 
of the networks are very well matched, as is presented in 
these figures. The FNN and CFN simulation are closer to 
the corresponding observed values than other networks, 
which is confirmed by the hydrographs and scatter plots. 
The structure of the networks may be the reason for the 
better performance of these networks. It matches better the 
principal processes that are involved in aquifer response 
to stresses such as evaporation, precipitation and other 
parameters.
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FIGURE 5. Scatter plots of the observed and forecasted water levels at training period for FNN network with different algorithms

FIGURE 6. Scatter plots of the observed and forecasted water levels at training period for CFN network with different algorithms
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FIGURE 7. Scatter plots of the observed and forecasted water levels at training period for RNN network with different algorithms

FIGURE 8. Comparison of results to observed groundwater level with 
different networks and algorithms
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CONCLUSION

In this research, the ability of the ANNs model with 
various networks to simulate water levels fluctuations was 
analyzed. Moreover, the effect of various algorithms was 
also studied. Consequently, ANNs computing is considered 
as a successful technique to apply for monthly groundwater 
level simulation from the available groundwater data. 
The performance evaluation criteria, namely the MSE 
and the correlation coefficient for simulated groundwater 
levels, are consistent and excellent. Moreover, the results 
successfully represent the network’s forecasted depth to 
groundwater in all observation data with a mean square 
error (MSE) of 0.048–0.107 m2. As a result of the research, 
the most suitable method for the networks trained with 
the Levenberg-Marquardt approach as it demonstrated 
the most precise simulations of the groundwater levels. 
Nevertheless, the networks with various architectures have 
been compared and the FNN model with an MSE of 0.048 – 
0.087 m2 achieved the best overall performance and the CFN 
with an MSE of 0.058 – 0.088 m2 was known as the second 
best. It was concluded that, once satisfactorily trained and 
calibrated, FNN and CFN will most likely provide better 
results in simulating groundwater level in other plains. 
In general, the obtained results from the study area were 
acceptable and confirmed that artificial neural networks 
can be a beneficial simulation tool to employ in the area 
of groundwater hydrology.
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