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ABSTRACT 

In this article, the general form of Runge-Kutta method for directly solving a special fourth- order ordinary differential 
equations denoted as RKFD method is given. The order conditions up to order seven are derived, based on the order 
conditions, we construct a new explicit four-stage sixth-order RKFD method denoted as RKFD6 method. Zero-stability of 
the method is proven. Comparisons are made using the existing Runge–Kutta methods after the problems are reduced 
to a system of first order ordinary differential equations. Numerical results are presented to illustrate the efficiency and 
competency of the new method. 
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ABSTRAK 

Dalam kertas ini, bentuk umum kaedah Runge-Kutta untuk menyelesaikan secara terus persamaan pembezaan biasa 
khas peringkat keempat yang ditandakan sebagai kaedah RKFD diberikan. Syarat tertib hingga ke peringkat ketujuh 
diterbitkan, berasaskan syarat ini, kami bina kaedah baharu RKFD tahap empat peringkat keenam yang ditandakan 
sebagai RKFD6. Kestabilan sifar kaedah ini dibuktikan. Perbandingan dijalankan menggunakan kaedah Runge-Kutta 
sedia ada setelah masalah tersebut diturunkan kepada sistem persamaan pembezaan peringkat pertama. Keputusan 
berangka dipersembahkan untuk menunjukkan kecekapan dan kompetensi kaedah yang baharu tersebut. 

Kata kunci: Kaedah RKFD; kaedah Runge-Kutta; peringkat keempat khas; persamaan pembezaan biasa 

INTRODUCTION

In this paper, we are concerned with the efficiency of the 
numerical integration of the special fourth-order ordinary 
differential equations (ODEs) of the form 

	 	 (1) 

with initial conditions 

	

where f :R × Rm → Rm   is a continuous valued function which 
does not contain the first, second and third derivatives. 
The fourth-order ordinary differential equations include 
initial or boundary value problems, which arise in 
various of applied fields such as quantum mechanics, 
electronics, molecular dynamics and control engineering. 
Traditionally, researchers and engineers solve the fourth-
order ODEs by converting them into a first-order system 
of ODEs and then applying a suitable numerical methods 
to solve the resulting system (Butcher 2008; Dahlquist 
1978; Hairer et al. 2010; Lambert 1991; Onumanyi et al. 
1999). However, the application of such techniques takes 
a lot of computational time. Direct integration method is 
proposed to avoid such computational burden and increase 

the efficiency of the method. Many authors have proposed 
several numerical methods for directly approximating the 
solutions for the higher order ODEs, for example Kayode 
(2008) proposed a zero stable predictor-corrector methods 
for solving fourth-order ordinary differential equations. 
Majid and Suleiman (2006) derived one point block method 
to solve system of higher order ODEs. A six point block 
method for solving fourth order ODEs without using the 
predictor-corrector methods derived by Olabode (2009). 
Waeleh et al. (2011) constructed a new block method for 
solving directly higher order ODEs. Awoyemi and Idowu 
(2005) proposed a hybrid collocations method for solving 
third-order ODEs. Hybrid linear multistep method with 
three steps to solve second-order ODEs was introduced by 
Jator (2011). All these methods are multistep and are not 
self-starting. Therefore, these methods require the starting 
method to obtain the initial values for solving (1). 
	 This paper primarily aimed to construct a one-step 
method of order six to solve special fourth-order ODEs 
directly. This new method is self-starting in nature. The 
paper is organized as follows: In the next section, we give 
the general form of RKFD method. The order conditions 
up to seventh order for RKFD method are derived in the 
following section. Next, the zero-stability of RKFD method 
is presented. In section that follows, a new explicit four-
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stage six-order RKFD method is constructed, namely RKFD6 
method. Numerical experiments are given after that to 
show the effectiveness and competence of the new RKFD6 
method as compared with the well known Runge-Kutta 
(RK) methods from the scientific literature. Conclusions 
is given in the last section. 

THE GENERAL FORM OF THE RKFD METHOD

In this section we present the general form of RKFD method 
with -stage for directly solving special fourth-order ODEs 
(1) as follows 

	 	 (2)

	 	 (3)

	 	 (4)

	 	 (5)

where		   
 
	 k1 = f (xn, yn), 

	 ki = f ,

	 i = 2, 3, …, s.	 (6)

	 All parameters  and ci of the RKFD method 
are used for i = 1, 2, …, s; j = 1, 2, …, s and suppose to be 
real. The RKFD method is an explicit method if aij = 0 for i 
≤ j and is an implicit method if aij ≠ 0 for i ≤ j. The scheme 
(2)-(6) can be expressed in Butcher tableau as follows: 
	  

	
c A

bT

	
	

	 In order to determine the parameters of the RKFD 
method given by (2)-(6), the RKFD method expressions (2)-
(6) are expanded using the Taylor series expansion. After 
performing some algebraic manipulations, this expansion is 
equated to the true solution that is given by the Taylor series 
expansion. The direct expansion of the truncation error is 
used to derive the order conditions for the RKFD method. 
A good deal of algebraic and numerical calculations which 
is required for the above operation which were carried out 
using algebra package MAPLE. 

ORDER CONDITIONS OF THE RKFD METHOD

Hussain et al. (2015) derived the algebraic order conditions 
for the RKFD method up to order five. Hence we used the 

same technique which is the Taylor series expansion to 
obtain the order conditions for RKFD method (2)-(6) up to 
order seven, which can be written as follows: 
The order conditions for y: 

	 order 4: 	 (7) 

	 order 5: 	 (8) 

	 order 6: 	 (9)

	 order 7: 	 (10)

The order conditions for yʹ: 

	 order 3: 	 (11)

	 order 4: 	 (12)

	 order 5: 	 (13) 

	 order 6: 	 (14)

	 order 7: 	 (15)

		  	 (16)

The order conditions for yʺ: 

	 order 2: 	 (17)

	 order 3: 	 (18)

	 order 4: 	 (19) 

	 order 5: 	 (20)

	 order 6: 	 (21)

		  	 (22)

	 order 7: 	 (23)

		   	 (24)

The order conditions for yʺʹ: 

	 order 1: 	 (25) 

	 order 2: 	 (26) 

	 order 3: 	 (27)

	 order 4: 	 (28) 

	 order 5: 	 (29)
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		  	 (30)

	 order 6:	 	 (31)

		     	 (32)

	 order 7:	 	 (33) 

		   	 (34)

		  	 (35)

ZERO-STABILITY OF THE RKFD METHOD

In this section, we investigate the convergence of the RKFD 
method by introducing the concept of zero-stability of 
the RKFD method. A good numerical method is a method 
in which the numerical approximation to the solution 
converges and zero-stability is asignificant criterion 
for convergence. The zero-stability concept for those 
numerical methods that are used for solving first and 
second order ODEs can be seen in Butcher (2008), Dormand 
(1996) and Lambert (1991). The RKFD method (2)-(6) can 
be expressed in the matrix form as follows: 

	

	
	

(36)

 

where I =  ,

is the identity matrix coefficients of  and 
 respectively, 

and A =  

is a matrix coefficients of  and  respectively. 
	 The characteristic polynomial of the RKFD method is 
called ρ(ζ)which can be written as follows: 

	 ρ(ζ) = ⎜Iζ – A⎜=  	 (37) 
 	

Hence, 
		

	 ρ(ζ)  = (ζ – 1)4,	  (38) 

we find that all the roots are ζ = 1,1,1,1. Generalizing the 
theorem proposed by Henrici (1962) for solving special 
second order ODEs, therefore, the RKFD method is zero-
stable since no root of the polynomial exceeds 1 and that 
the multiplicity of the roots of modulus 1 is at most 4. It 
is well-known that for a method to be convergent it has to 
be consistent and zero-stable.
	 For the first order ODE yʹ(x) = f (x, y), the method is 
consistent if its order is at least one. For the special second 
order ODE yʺ(x) = f (x, y), (p. 301 in Henrici (1962), the 
numerical method is consistent if the order is at least two. 
So without loss of generality we can say that for the special 
third order ODE yʹ̋ (x) = f (x, y), the method is consistent if 
the order is at least three and for the special fourth order 
ODE y(iv)(x) = f (x, y), the method is consistent if the order 
is at least four. Hence the method we are going to derive 
is sixth order therefore it is consistent.

SIXTH ORDER RKFD METHOD WITH FOUR-STAGE

In order to construct the four-stage sixth-order RKFD6 
method the algebraic conditions of RKFD method up to 
order six for y, yʹ, yʺ and y ʹ̋ need to be solved. We choose 
(11)-(14) from order conditions for yʹ, (17)-(21) from 
order conditions for yʺ and (25)-(29) and (31) from order 
conditions for y ʹ̋. Consequently, the system of equations 
consists of 15 non-linear equations with 15 unknowns 
need to be solved. This system has no free parameter but 
is consistent, solving the system simultaneously yields a 
a unique solution as follows: 

	

	
 
	

	 Substituting the values of c2, c3 and c4 into order 
conditions for y we get

	
 
	 Here we have one free parameter b1 which can be 
chosen by minimizing the error norm of the seventh order 
conditions for y according to Dormand et al. (1987). The 
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error norms and the global error norm of the seventh order 
conditions are defined as follows: 

	 	 (39)

	 	 (40)

(41)

where τ(7), τʹ(7), τʺ(7) and τʹʺ(7) are the local truncation error 
norms for y, yʹ, yʺ and yʺ́ of the RKFD method, respectively 
and  is the global error norm. As a result we find the 
error equation of y as follows:

	 	 (42) 

	

	 By minimizing  with respect to the free parameter 
b1, we obtain  b1 =   is the optimal value which produces:

	  
 

	 In order to obtain the values of coefficients and a21,    
a31, a32, a41, a42 and a43. Substituting the values of b1, b2, b3, 

b4, ,   and  into (30), (32) and 
(34) of the order conditions of yʹ̋  and (16) of the order 
conditions of yʹ, which yields the following system of 
non-linear equations, which needs to be solved 

	 	 (43)

	 	 (44)

	 	 (45)

	 	 (46)

	 	 (47)

	
	

(48) 

Solving (43)-(48) simultaneously we get 

	

	

	 Consequently we compute the local truncation errors 
and is given as follows:

	
 	
 

and the global error norm is 

where  τ(7), τʹ(7), τʺ(7) and τʺʹ(7) are error norms for y, yʹ, 
yʺ and y ʹ̋ of the seventh order conditions of the RKFD6 

TABLE 1. Butcher tableau for RKFD6 method

0 0

1

0

0

method, respectively. Finally, all the parameters of four-
stage sixth-order RKFD method and denoted as RKFD6 are 
written in Butcher tableau as follows (Table 1): 

NUMERICAL RESULTS

In order to evaluate the performance of the new RKFD6 
method, a set of special fourth-order ODEs are solved and 
then compared the results with some efficient methods, 
which are chosen from the scientific literature. We use 
in the numerical comparisons the criteria based on the 
maximum error in the solution (Max Error = max(|y(xn) 
– yn |)) which is equal to the maximum of absolute errors 
of the true solutions and the computed solutions. Figures 
1-5 show the efficiency curves of Log10(Max Error) against 
the computational effort measured by Log10(Function 
Evalutions) which are required by each method. The 
following methods are used in comparison: RKFD6: The 
four-stage sixth-order RKFD method derived in this paper; 
RK6N: The seven-stage sixth-order RK method given in 
Butcher (1964); and RK6B: The seven-stage sixth-order 
RK method derived by Butcher (2008). 
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FIGURE 1. The efficiency curves for Problem 1 with h = 0.1⁄(2i, i = 0, 2, 3, 4)

FIGURE 3. The efficiency curves for Problem 3 with h = 0.1⁄(2i,  i = 0, 2, 3, 4)

FIGURE 2. The efficiency curves for Problem 2 with h = 0.1⁄(2i, i = 0, 2, 3, 4)
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Problem 1 Consider the homogeneous linear problem: 

	 y(iv) = – 4y,   0 < x ≤ 10,

	 y(0) = 0,  yʹ(0) = 1,  yʺ(0) = 2,  yʺʹ(0) = 2.
 

The exact solution is given by y(x) = ex sin(x). 

Problem 2 Consider the non-homogeneous non-linear 
problem: 

	 y(iv) = y2 + cos2(x) + sin(x) – 1,   0 < x ≤ 10,

	 y(0) = 0,  yʹ(0) = 1,  yʺ(0) = 0, yʺʹ(0) = –1.
 

The exact solution is given by y(x) = sin(x).

Problem 3  Consider the non-linear problem:

	 y(iv) = 
cos7

	 y(0) = 0,  yʹ(0) = 1,  yʺ(0) = 0,  yʺʹ(0) = 1. 
 

	 The exact solution is given by y(x) = arcsin(x). The 

problem is integrated in the interval 

Problem 4 Consider the linear system: 

y(iv) = e3x u,   y(0) =1, yʹ(0) = –1,  yʺ(0) = 1,  y ́ ʺ(0) = –1.

z(iv) = 16e–x y,  z(0) = 1, zʹ(0) = –2,  zʺ(0) = 4,  zʺʹ(0) = –8.

FIGURE 4. The efficiency curves for Problem 4 with h = 0.1⁄(2i, i = 0, 2, 3, 4)

 FIGURE 5. The efficiency curves for Problem 5 with h = 0.1⁄(2i, i = 0, 2, 3, 4)
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w(iv) = 81e–x z, w(0) = 1, wʹ(0) = –3,  wʺ(0) = 9,  
	wʺʹ(0) = –27.

u(iv) = 256e–x w,  u(0) = 1, uʹ(0) = –4,  uʺ(0) = 16,  
uʺʹ(0) = –64.
 

	 The problem is integrated in the interval [0, 2]. The 
exact solution is given by:

	 y = e–x,  z = e–2x,  w = e–3x,  u = e–4x.

Problem 5 Consider the non-linear system:

y(iv) = y + 

	y(0) =1, yʹ(0) = 0,  yʺ(0) = –1,  y ʹʺ(0) = 0.

z(iv) = z – 

z(0) = 0, zʹ(0) = 1,  zʺ(0) = 0,  zʺʹ(0) = –1.

w(iv) = 16w + 

w(0) = 1, wʹ(0) = 0,  wʺ(0) = –4,  wʺʹ(0) = 0.

u(iv) = 16u – 

u(0) = 0, uʹ(0) = 2,  uʺ(0) = 0,  uʺʹ(0) = –8.
 

	 The problem is integrated in the interval [0, 2]. The 
exact solution is given by:

	 y = cos(x),  z = sin(x),  w = cos(2x),  u = sin(2x).

CONCLUSION

In this paper, we have derived the order conditions of 
the RKFD methods up to order seven. Based on the order 
conditions, we constructed the four-stage sixth-order 
RKFD method for directly solving special fourth-order 
ODEs, this method denoted as RKFD6 method. We also 
proved that the RKFD method is zero-stable. Numerical 
results illustrate that the RKFD6 method is more efficient 
as compared with the well known Runge-Kutta methods 
in the literature. As a conclusion it can be said that, the 
new RKFD6 method can efficiently solve the special 
fourth-order ODEs in terms of accuracy and number of 
function evaluations. 
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