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of Sago Pith Waste Biocomposites
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ABSTRACT

This paper reports the post-processing ageing phenomena of thermoplastic sago starch (TPS) and plasticised sago pith 
waste (SPW), which were processed using twin-screw extrusion and compression moulding techniques. Wide angle X-ray 
diffraction (XRD) analyses showed that after processing, starch molecules rearranged into VH-type (which was formed 
rapidly right post processing and concluded within 4 days) and B-type (which was formed slowly over a period of 
months) crystallites. Evidence from Fourier transform infrared spectroscopy (FTIR) analyses corroborated the 2-stage 
crystallisation process, which observed changes in peak styles and peak intensities (at 1043 and 1026 cm-1) and  band-
narrowing. Thermogravimetric analysis (TGA) studies showed that the thermal stability of plasticised SPW declined 
continuously for 90 days before gradual increments ensued. For all formulations tested, post-processing ageing led to 
drastic changes in the tensile strength (increased) and elongation at break (decreased). Glycerol and fibres restrained 
the retrogradation of starch molecules in TPS and SPW.
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ABSTRAK

Kertas ini melaporkan  fenomena penuaan pasca pemprosesan kanji sagu termoplastik (TPS) dan hampas empulur sagu 
memplastik (SPW)  yang diproses menggunakan teknik penyemperitan skru berkembar dan pengacuan mampatan. Analisis 
pembelauan sinar-X (XRD) menunjukkan bahawa selepas pemprosesan, molekul kanji disusun semula ke dalam hablur 
jenis VH (berlaku dengan cepat selepas pemprosesan dan selesai dalam tempoh 4 hari) dan jenis B (berlaku secara 
perlahan dalam tempoh beberapa bulan).  Bukti daripada analisis  transformasi Fourier inframerah (FTIR) menyokong 
proses penghabluran 2-peringkat, yang menunjukkan perubahan dalam gaya dan keamatan puncak (pada 1043 dan 1026 
cm-1) dan jalur-penyempitan. Analisis termogravimetri (TGA) menunjukkan bahawa kestabilan haba untuk SPW terplastik 
menurun secara berterusan selama 90 hari sebelum kenaikan secara beransur-ansur berlaku. Untuk semua formulasi 
yang diuji, penuaan pasca pemprosesan membawa kepada perubahan drastik dalam kekuatan tegangan (bertambah) dan 
pemanjangan pada waktu rehat (menurun). Gliserol dan serat  menghalang retrogradasi molekul kanji dalam TPS dan SPW.

Kata kunci: Hampas empulur sago memplastik; kanji termoplastik; penurunan terma; retrogradasi; sifat tegangan

INTRODUCTION

One of the main characteristics of thermoplastic starch 
(TPS)-based composites is their time-dependant behaviour 
during and after processing. After melt processing, the 
predominantly amorphous products are yet to achieve 
thermodynamic equilibrium. Starch chains are still 
mobile, even at temperatures below its glass transition 
temperature (Tg) and densification (physical ageing) may 
occur (Averous & Halley 2009; Champion et al. 2000). At 
a temperature above Tg, the system will evolve towards 
equilibrium conditions; starch macromolecules rearrange 
and recrystallize (retrogradation phenomenon) over time. 
These phenomena (physical ageing or retrogradation), 
which may cause changes to the structural and macroscopic 
properties during storage, are collectively known as post 
processing ageing (Averous 2004; Halley & Averous 2014). 
In light of the significant impact of the ageing phenomenon 
on the macroscopic properties, e.g. strength and flexibility 

of starch-based plastic products, one must understand and 
incorporate its effects in the phases of product design and 
development (Smits et al. 1999, 1998).
	 While there is a plethora of references on gelatinised 
starch or TPS retrogradation (Ambigaipalan et al. 2013; 
Karim et al. 2000; Schwartz et al. 2014; van Soest 1996), 
technical reports on TPS composites using cellulose fibres 
as an additive are still scarce. The bulk of the research 
evaluated the effects of the fibre additive on starch 
retrogradation and was largely devoted to food products 
(Goldstein et al. 2010; Lebesi & Tzia 2011; Santos et al. 
2008; Yildiz et al 2013; Ronda et al. 2014). However, two 
studies that were based on natural fibres or microfibrils 
in TPS composites, did yield encouraging outcomes in 
that the post-processing ageing of TPS was significantly 
retarded through fibre-matrix interactions in a 3D-network 
stabilised by numerous low intermolecular bonds (Averous 
& Boquillon 2004; Averous et al. 2001). 
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	 This article describes our findings during the study 
of the post-processing ageing phenomena of TPS and 
plasticised sago pith waste (SPW). SPW is a starch-based 
system, which contains fibrous residues derived from the 
sago starch manufacturing process. It has been previously 
reported that this high starch content waste (65% starch 
and 35% fibre, by weight) could be successfully plasticised 
and processed into biocomposites through twin screw 
extrusion employing water and glycerol as plasticisers, 
thus eliminating the need for adding any plastic material 
(Lai et al. 2014, 2013), as previously done (Toh et al. 2011; 
Yee et al. 2011). 
	 The samples were prepared from a set of multiphase 
systems (based on neat sago starch or pith waste) and were 
characterised by a range of techniques, namely, wide angle 
X-ray diffraction (XRD), Fourier transform infrared (FTIR), 
thermogravimetric analysis (TGA) and scanning electron 
microscopy (SEM). 

EXPERIMENTAL DETAILS

RAW MATERIALS

Sago pith waste (SPW) and sago starch (SS) were kindly 
provided by Ng Kia Heng Sago Industry, Johor (Malaysia). 
SPW has been characterised and its properties and 
composition (starch and moisture content and particle 
size distribution) were reported elsewhere (Lai et al. 
2013). Regarding the handling of SPW, raw SPW from the 
factory was first dried under sunlight and later ground into 
a fine powder using a grinder. Prior to mixing with other 
components, SPW powder was further dried in an oven at 
a temperature of 105°C for 6 hours to ensure that all the 
moisture was removed. Glycerol from Fisher Chemicals 
was used as the plasticizer. Calcium stearate (CaS), 
purchased from Sun Ace Kakoh (M) Sdn. Bhd, was used 
as a processing aid. All the materials and chemicals were 
used directly without further purification. 

FORMULATION AND COMPOUNDING OF THE MATERIALS

Samples with pre-determined formulae were prepared 
according to those listed in Table 1. Distilled water and 
glycerol were added to aid the plasticization and extrusion 
of the starch and SPW. Total (distilled water + glycerol) 
added to SPW-G35 and SPW-G45 was 70 phr, 15 phr more 
comparing to TPS. This is because the formal contain fibre 

and thus need more processing aid in the extrusion process. 
For each sample, the components were mixed for 5 min 
using a high-speed mixer at a speed of 2000 rpm at room 
temperature. The mixtures were then kept in a fully sealed 
bag for 24 h at room temperature before plasticisation. The 
compounding was performed with a twin-screw extruder 
(Sino PSM30 B5B25 - Sino Alloy Machinery Inc.) with 
a screw diameter of 32 mm and 10 heating zones. The 
compounding process was carried out at a speed of 250 
rpm and the extruder temperature profile was 95/95/100/90
/90/90/90/90/100/105°C. The extrudate was then pelletized 
and stored in a controlled chamber.

PREPARATION OF SAMPLES 

The materials were moulded into sheets, each of dimension 
160 (length) × 160 (width) × 1 (thickness) mm3 via 
compression moulding at 120°C and 13 MPa for 5 min. 
Prior to the application of pressure, the granules were pre-
heated for 8 min, at the same temperature. The moulded 
samples were cooled rapidly using water right after the 5 
min moulding process. The samples required for different 
testing were cut from the compression-moulded sheets 
according to the standard requirements. All samples were 
then stored in a controlled chamber containing a saturated 
solution of magnesium nitrate in order to obtain a 54% 
relative humidity at room temperature. Samples were taken 
out for various testing immediately after compression 
moulding and at intervals of after 4, 33, 60 and 90 days of 
conditioning. Additional data (after 300 days of ageing) 
were taken using XRD and TGA as supporting data.

CHARACTERISATION OF THE STARCH-BASED MATERIALS

TENSILE TEST

The tensile strength and elongation at break of the moulded 
samples were determined using a Lloyd Tensile Machine 
(USA). The dimensions of the test specimens conform to 
the Type V sample of the ASTM D638-03. The test was 
carried out at a crosshead speed of 1 mm/min. On average, 
six samples were tested for each formulation.

SCANNING ELECTRON MICROSCOPY

A JEOL JSM-6390LV Scanning Electron Microscope 
operated at 15 kV and secondary electron imaging (SEI) 
mode was used to examine the morphology of the tensile 

TABLE 1. Formulations for plasticised SPW

Formulation
 Wt% phr

SPW SS Water Glycerol CaS
TPS
SPW-G35
SPW-G45

0
100
100

100
0
0

20
35
25

35
35
45

2
2
2

*phr = parts per hundred parts of resin
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fractured surface of the specimens. Representative samples 
were mounted on conductive carbon tapes adhered to 
aluminium stubs and were subsequently coated with gold 
under a vacuum using a JEOL JFC-1600 Auto-Fine Coater 
to prevent charging during imaging and analysis. 

THERMOGRAVIMETRIC ANALYSIS

An accurately weighted sample (in the range of 10 mg) 
was loaded in a platinum pan. Analyses were conducted 
using a Perkin Elmer TGA 7 analyser at a temperature range 
of 30-700°C, a heating rate of 20°C/min and a nitrogen 
purging rate of 20 mL/min.

WIDE-ANGLE X-RAY DIFFRACTION

Wide angle X-Ray diffraction (XRD) was employed to study 
the morphological properties of the plasticised SPW using a 
Siemens D5000 diffractometer (Germany) equipped with a 
copper anode X-ray tube and Cu-Kα radiation (wavelength: 
1.5406 Ǻ) at room temperature. The range of scans was 
2Ɵ = 5°-40° at the speed of 0.03° per 2 seconds. The 
same sample from each formulation was used for this test 
throughout the whole ageing period.

FOURIER TRANSFORM INFRA-RED SPECTROSCOPY

Attenuated total reflectance-Fourier transform infrared 
(ATR-FTIR) studies in the range of 4000-700  cm−1 were 
conducted on samples using a Perkin Elmer System 2000 
FTIR spectrometer. For each spectrum, 128 scans were 
registered. The same sample from each formulation was 
used for this test throughout the whole ageing period.

RESULTS AND DISCUSSION

The freshly compression moulded TPS samples were highly 
flexible and homogenous but not fully transparent. With 
a Tg lower than the ambient temperature, the main post-

processing mechanism, which took place in the samples 
was expected to be retrogradation and recrystallization 
(Averous 2004). 

CRYSTALLINITY

The XRD patterns assignment to raw SS materials has been 
previously reported elsewhere (Lai et al. 2013). In this 
study, SS was found to adopt a C-type structure (Figure 
1), which agreed with the literature findings (Ahmad & 
Williams 1999; Pukkahuta & Varavinit 2007).
	 In TPS, the initial C-type structure of SS was 
disrupted by the twin-screw extrusion process, leading 
to a predominantly amorphous structure immediately 
after compression moulding (Figure 1). The virtually 
amorphous structure of TPS after processing was 
manifested in the form of a featureless XRD pattern, in 
contrast to that of raw SS. However, two broad features 
centred at 2θ circa 13° and 20° in the diffractogram of 
TPS (‘After Processing’, Figure 1), may be attributed to 
the evolving VH-type crystallites ascribed to the presence 
of amylose-lipid complexes. These complexes formed 
when the linear component of SS, namely, amylose reacted 
with the native lipids present in SS, under the effects of 
thermal and mechanical forces (van Soest 1996). The 
complexes recrystallized rapidly into VH-type crystallites, 
even during the cooling step of the compression moulding 
process. 
	 By comparing the four sets of XRD patterns in 
Figure 1, one may infer that the recrystallization of 
the amylose-lipid complexes subsided 4 days after 
processing. No significant differences could be detected 
between the diffractograms of the samples on day-4 and 
day-90, specifically those signals attributed to VH-type 
crystallites. This agrees well with the findings reported 
by Pushpadass and Hanna (2009) in that for TPS made 
from cornstarch, the most significant change in the VH 
crystallite peaks occurred within the first three days 

FIGURE 1. XRD diffractograms of raw SS and TPS at different points of ageing
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after processing. Similar results were also reported by 
van Soest (1996) in his study on the ageing behaviour 
of potato starch-based TPS. In fact, he claimed that the 
crystallisation of these complexes came to completion a 
few hours after processing. 
	 Four days after processing, a B-type crystalline 
structure (see peaks at 2θ = 17° and 22.5° Figure 
1) started to emerge. The retrogradation of amylose 
and amylopectin is believed to be responsible for 
the emergence of these two peaks in two separate 
stages. Firstly, residue native amylose, which did not 
form complexes with lipids, rearranged into B-type 
crystallites upon cooling; this process was fast and 
came to completion within a few days thus, constituted 
most of the B-type crystallites detected on day four. On 
the other hand, the rearrangement of amylopectin into 
B-type crystallites took place at a relatively slow pace 
in a timespan of weeks before it concluded. This gradual 
growth of B-type crystallites from amylopectin later led 
to sharper and better-formed peaks at 2θ of 17° and 22.5° 
on day 90. 
	 The retrogradation of plasticised SPW closely follows 
the trend found in TPS, as described in the last paragraph. 
VH-type crystallites were detected shortly after processing 
and no significant changes in diffractograms were 
observed as time passed (Figure 2). In contrast, as the 
sample aged during storage, B-type crystallites became 
more noticeable (with its evolvement commencing on 
day-4 after processing), as evidenced by the more intense 
and sharper correspondent peaks at 2θ = 17° and 22.5°. 

FOURIER TRANSFORM INFRA-RED SPECTROSCOPY

In Figure 3, band narrowing in the FTIR spectra of SPWs (as 
processed and after ageing) was observed. The narrowing 
could be attributed to the retrogradation of plasticised SPWs, 
as cited in a report by Goodfellow and Wilson (1990), in 
which pea amylose and waxy maize amylopectin were 
examined.
	 In the FTIR spectrum of the sample after processing, no 
distinct peaks were identified. As the samples aged, several 
peaks (at 1043, 1026 and 994 cm-1) became more prominent 
with sharper and better formed peaks (see spectra labelled 
as the 60 days for SPW-G35 and 90 days for SPW-G45). 
The origin of the change has previously been identified to 
be the rearrangement of starch molecules (Pushpadass & 
Hanna 2009). The peaks located at 1043 and 1026 cm-1 are 
sensitive to crystallinity while those centred at 994 cm-1 
vary in response to a change in the moisture content of the 
sample (van Soest et al. 1995). 

(a) (b)

FIGURE 3. FTIR spectrums of  (a) SPW-G35 and (b) SPW-G45 
before and after ageing

	 Right after processing, the peak at around 1026 cm-1 
is evident, which corresponds to the amorphous starch hot 
gel systems (van Soest et al. 1994). This peak subsided as 
the crystallinity of ageing samples improved (signified by 
the growth of a peak at 1043 cm-1) over a period of 60 days 
(SPW-G35) and 90 days (SPW-G45) (Pushpadass & Hanna 
2009). These observations corroborated the inference 
previously extracted from XRD analysis. 

TENSILE TEST

The evolutions of tensile strength and elongation at break 
of TPS and the plasticised SPW G35 and G45 within 90 
days of the ageing period are captured in Figure 4. It is 
apparent that ageing has induced drastic changes to the 
tensile properties of all the tested materials, specifically 
within the first 33 days. As discussed, ageing took place 
within the first four days, during which the retrogradation 
of native amylose promoted an increment in tensile strength 
of 144, 5228 and 27% for TPS, SPW-G35 and SPW-G45, 
respectively. However, their elongation at break points 
suffered a drop of 89, 20 and 41%.

FIGURE 2. XRD Diffractograms of (a) SPW-G35 and 
(b) SPW-G45 at different ageing times

(b)

(a)
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	 As the recrystallization of amylopectin (B-type 
crystallite formation) ensued, further enhancement in 
tensile strength was observed for all three materials. 
Relative to the data on day-4, the tensile strength of TPS, 
SPW-G35 and SPW-G45 further increased to 2296, 11 and 
3935%, respectively, within a month. This is consistent 
with van Soest’s observation (van Soest 1996) in which 
the retrogradation of amylopectin (B-type crystallites 
formation) was found to be liable for the changes observed 
in the mechanical properties of thermoplastic potato starch 
on a long-term basis. 
	 A further question arises: How did the retrogradation 
process lead to the changes in the mechanical properties of 
these composites? Pushpadass and Hanna (2009) offered 
an explanation: A reinforced starch network took form 
due to an intermolecular crystallisation process involving 
the physical cross-linking between the amylopectin and 
amylose-amylopectin chains, whose formation led to an 
improved tensile strength at the expense of a decrement 
in flexibility.
	 After 33 days of ageing, the recrystallization process 
ceased, reaching a plateau after which the values of 
tensile properties only fluctuated within a small range. 
This behaviour was the result of a decreasing mobility 
of amylopectin chains as the crystallinity of the material 
was improving with time (Pushpadass & Hanna 2009). 
At the end of the 90-day ageing, the tensile strength of 
TPS, SPW-G35 and SPW-G45 increased by 7100, 5800 and 
5000%, respectively, at the expense of the 90, 50 and 50% 
drop in their elongation at break point. 

From the data provided, four remarks may be made:

The most notable improvement in tensile strength is 
that of SPW-G35 after 4 days of ageing, which indicated 
that the retrogradation process in this formulation 
commenced earlier compared to SPW-G45, owing to its 
lower glycerol content, which exerted lesser resistance to 
the rearrangement of amylopectin molecules into B-type 
crystallites. 
	 The retrogradation rate (obtained from the percentage 
of tensile strength increment over time) of TPS was 
appreciably higher over those of plasticised SPW. We 
asserted that the fibres present in SPW were the major 
contributor to this phenomenon inasmuch as its presence 
reduced the mobility of amylopectin molecules, and, thus, 
hindered its recrystallization process. 
	 The difference observed between the two plasticised 
SPWs was attributed to their different glycerol content; the 
higher the glycerol content, the lower the retrogradation 
rate and extent. Once again, it echoed the previous studies 
by other researchers (van Soest et al. 1996). At this point, 
a conclusion can be drawn from these observations, i.e. 
glycerol and fibre can serve as the agent to restrain the 
rearrangement of amylopectin molecules hence, reduce 
the effects of post-processing ageing on the mechanical 
properties of starch-based plastics.

	 The glycerol content in SPW exerts a significant 
effect on its ability to withstand tensile stress along with 
the ageing strengthening phenomenon. A 10% decrease 
from 45% to 35% glycerol resulted in an increase in 
tensile strength (Figure 4(a)). This is in accordance with 
the findings of Pushpadass and Hanna (2009) in that the 
same trend was observed for plasticised cornstarch. They 
attributed the effect to an increased free volume and 
weakened interactions between the starch chains in the 
starch-fibre composite network. However, the flexibility 
of the samples did not show considerable change when the 
glycerol content was varied.
	 The effects of post-processing ageing were also 
apparent from the SEM micrographs, as shown in Figure 
5. The surface of the tensile-fractured TPS samples after 
compression moulding displayed a ductile behaviour, and 
the event of plastic deformation was clearly inferred by the 
presence of a fibrillated structure. When subjected to tensile 
stress, TPS was being pulled out and drawn into fibrils 
whose form contributed to the extremely high elongation 
at break value of TPS at this point of time. 
	 After 33-days, the fibrillated structure was replaced 
by scale-like markings as shown in Figure 5(b) and 5(c), 
believed to be connected to the plastic deformation and 
stress whitening of TPS (Chaléat 2008). The existence of 
smooth regions amongst the scale-like markings signalled 

FIGURE 4. Evolution of (a) Tensile strength and (b) Elongation 
at break of TPS and plasticised SPW within 90 days of ageing

(a)

(b)
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the occurrence of brittle fracture and residual flexibility in 
TPS. The previous discussions based on XRD and tensile test 
results were once again validated.

THERMAL RESISTANCE

Mass loss derivative curves of SPW-G35 and SPW-G45 
are presented in Figure 6(a) and Figure 6(b), respectively. 
Details of thermal degradation of every individual 
component which constituted the composites, including 
TPS and SPW had been discussed in details in a separate 
publication (Lai et al. 2013) and will not be discussed here. 
It is clearly shown in the figure that, an unprecedented 
trend is evident that the major degradation range (MGR) 
and the temperature at the peak degradation rate of the two 
SPWs formulated were at their maxima after processing. 
Later, these values decreased with increasing ageing time 
and reached their minima on the 90th day, after which 
increasing time saw the increment in these values until 
the 300th day. 
	 As shown in Table 2, the two plasticised SPWs behaved 
similarly in terms of the changes involving the two thermal 
degradation parameters (namely, the major degradation 
range (MGR) and the temperature at the peak degradation 
rate) as a function of ageing time. For instance, the 
temperature at the peak degradation rate on the 90th day is 
309oC for both SPW-G35 and SPW-G45. Since, in the range 
of MGR, both glycerol and water would have been boiled off 
from the system completely, it made sense to exclude them 
in the explanation of the new trend in both SPWs. The most 
logical cause leading to the different thermal resistance 
behaviour lies with the components of fibre present in the 
two plasticised SPWs. It is known that fibre addition to TPS 

may significantly modify the qualitative and quantitative 
thermal profiles of starch gelatinisation and the kinetics 
of amylopectin retrogradation (during storage), although 
the extent of the modification is dependent on the source 
of the fibre (Rosell & Santos 2010).
	 Santos et al. (2008) found that the dietary fibre added 
to the bread could physically interfere with the amylopectin 

(a)

(b) (c)

FIGURE 5. SEM micrograph of TPS (a) After compression moulding and (b) After 33 days of ageing. Fibrils 
formed from the pulling of largely amorphous TPS after compression moulding. Structural changes from fibrils 

to scale-like occurred, which is attributable to the formation of VH and B type crystallites upon ageing

FIGURE 6. Derivative mass loss curve at different ageing days 
for (a) SPW-G35 and (b) SPW-G45
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recrystallization process, retarding the kinetics of 
retrogradation. Additionally, the hydrophilic nature of the 
fibre facilitated a starch-fibre interaction, locking down 
and reducing the amount of starch available for further 
crystallisation. This, in turn, led to the formation of less 
perfect crystallites resulting in a lower melting temperature 
and a broader endothermic transition. As hydrophilic fibre 
also interacts with the water present in TPS, a reduction in 
the availability of free water molecules helps restrain the 
retrogradation process (Bárcenas & Rosell 2007).
	 However, the underlying mechanism, which leads 
to the observed trends in the kinetics of retrogradation, 
remains unclear at this point of time and further research is 
required. Nevertheless, our results clearly demonstrate that 
adding fibre to TPS changes the retrogradation behaviour of 
the system and makes the material significantly better and 
versatile. Moreover, we envisage that our work reported 
herein would aid in broadening the application range of 
TGA in TPS related research. 

CONCLUSION

The post-processing ageing phenomena of plasticised 
SS and SPW were reported. The samples were examined 
and characterised using a range of methods inclusive of 
XRD, FTIR, TGA, tensile test and SEM. The changes at the 
molecular level and their manifestation in the properties 
of the materials are discussed: 
	 From the XRD analysis, starch molecules rearranged 
into VH-type and B-type crystallites after processing with 
the former developing rapidly and concluding within 4 
days, and the latter proceeding slowly over a period of 
months. The changes observed in FTIR spectra correlated 
to the emergence of crystallinity from the initially 
amorphous starch hot gel after processing. These changes 
include a band-narrowing, evolvement of peak shapes and 
varied peak intensities within the range 1150-950 cm-1, 
specifically, two registered at 1043 and 1026 cm-1. Upon 

ageing, molecular restructuring takes place in TPS and 
plasticised SPW, which are reflected in the bulk properties 
leading to an increase in the tensile strength and a decline 
in elongation at break in all the formulations tested. The 
TGA analysis showed that the thermal stability of the 
plasticised SPWs follows a trend with two-stages: it receded 
first, and, upon reaching the 90th day maturity, a gradual 
increment took place. Glycerol and fibre were identified 
as the two compounds that restrained the retrogradation 
process of TPS. 
	 Concerning the thermal resistance of plasticised SPWs, 
an unprecedented ageing trend was observed, providing 
fresh insights into the effect of the addition of fibre on the 
retrogradation of TPS and its thermal stability. Thus, the 
authors propose that TGA is a useful tool in studying the 
retrogradation of fibre filled TPS.
	 The rapid changes occurred in starch-based plastics, 
specifically their strength and flexibility after-processing, 
which restricts their potential and development into 
successful consumer products. To capitalise on the unique 
properties of starch-based plastics, it is imperative that 
one learns to control the post-processing ageing in starch 
plastic materials in order to guarantee the applicability of 
this environmentally friendly material in the movement 
of replacing and reducing the use of non-biodegradable 
plastic materials. A holistic approach must be taken in 
the design of starch-plastic based products, integrating 
the production process of starch-plastics and the post-
production control of starch retrogradation phenomena. 
To which, the mechanical properties of the starch based 
plastics and products should be considered only after the 
retrogradation process has reached maturity.
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Weight loss in MGR Peak degradation rate 

in MGR
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SPW-G35 (90)
SPW-G35 (180)
SPW-G35 (235)
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SPW-G45 (0)
SPW-G45 (11)
SPW-G45 (33)
SPW-G45 (90)
SPW-G45 (180)
SPW-G45 (235)
SPW-G45 (300)

312 - 430
275 - 417
245 – 390
252 – 390
258 – 394
261 - 407
310 – 426
315 – 430
269 - 400
255 – 395
241 – 390
255 – 395
270 - 405
306 – 428

47
39
51
45
45
53
50
43
44
44
46
47
47
48

15
13
14
13
13
15
15
13
14
13
13
14
14
14

368
338
313
309
314
326
365
366
325
318
309
322
325
364
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