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ABSTRACT

The study was conducted to determine the best model suitable for the determination of ferrum uptake in Brassica chinensis 
(flowering white cabbage). A nonlinear regression model was selected to determine the amount of ferrum absorbed by each 
part of the Brassica chinensis plant namely the leaves, stems and roots. The Levenberg-Marquardt method was used to 
perform the nonlinear least square fit. This method employs information on the gradients and hence requires specification 
of the partial derivatives. A suitable model was obtained from the exponential regression model. The polynomial model 
was found to be appropriate for leaves, the mono-exponential model was suitable for stems and the simple exponential 
model for roots. The residual plots and the normal probability plots from each of the models indicated no substantial 
diagnostic problems, so it can be concluded that the polynomial and exponential regression models provide adequate 
fit to determine data on heavy metal uptake by the flowering white cabbage. 
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ABSTRAK

Kajian dijalankan untuk menentukan model yang sesuai dalam menentukan jumlah pengambilan Fe oleh Brassica 
chinensis (sawi bunga). Model regresi tak linear dipilih untuk menentukan pengambilan logam berat oleh setiap bahagian 
sawi bunga iaitu daun, batang dan akar. Kaedah Levenberg-Marquardt digunakan untuk melakukan penyuaian melalui 
kaedah kuasa dua terkecil tak linear. Kaedah Levenberg-Marquardt menggunakan maklumat kecerunan dan memerlukan 
spesifikasi terbitan separa. Model yang sesuai diperoleh dengan menggunakan model regresi eksponen. Model polinomial 
sesuai untuk bahagian daun manakala model mono-eksponen sesuai untuk batang dan model eksponen ringkas untuk 
akar. Keputusan menunjukkan plot reja dan plot kebarangkalian normal daripada setiap model memenuhi andaian, 
maka dapat disimpulkan bahawa model regresi polinomial dan eksponen memadai bagi penentuan data pengambilan 
logam Fe oleh sawi bunga.

Kata kunci: Brassica chinensi; Fe; regresi tak linear; kaedah Levenberg-Marquardt

INTRODUCTION

Trace elements such as ferrum (Fe), cuprum (Cu), Zn (Zn), 
Cobalt (Co), magnesium (Mg), manganese (Mn), boron (B) 
and natrium (Na) are known to be essential for the growth 
of plants (Berg 2008; Hopkins 1999). Fe, Cu, Zn and Mn 
are also heavy metals and important for agriculture and 
human health (Williams et al. 2000). Deficiency of these 
elements in the soil and plant may reduce agricultural 
productivity and affect human health (Alloway 2013). 
	 Plants can accumulate trace elements, especially heavy 
metals, in or on their tissues due to their great ability to 
adapt to various chemical elements in the environment 
(Berg 2008). Thus plants are intermediate reservoirs 
through which trace elements from soil, water and air, 
move into the human body (Kabata-Pendias & Pendias 
2001). Heavy metals can cause toxic effects to the plants 
and also to humans and animals that consume the plants if 
the concentration of the metals exceed the requirement of 
the plants. According to Berg (2008) and Hopkins (1999), 

Fe is one of the most important elements for plants nutrition 
and is required in large amounts. It plays a significant role 
in life-sustaining processes of the plant from respiration to 
photosynthesis, especially as the electron-transport chains 
(Kim & Guerinot 2007). Plants acquire Fe as ferric (Fe3+) 
or ferrous (Fe2+) ions although the Fe 2+ ion is more likely 
to be absorbed in much higher concentrations than the Fe3 

ion (Roschzttardtz et al. 2013). Excess amounts of iron 
absorbed by the plant will be stored in the iron-storage 
protein, ferritin, in the roots of the plants (Connolly & 
Guerinot 2002; Hopkins 1999). 
	 Several research studies have been carried out on Fe 
uptake by plants from various types of soil especially well 
drained and waterlogged soils. Nasser (2016) reported 
that Fe accumulated in high amounts in the roots of paddy 
plants at selected areas in MADA, Kedah, in amount ranging 
from 4990.0 to 20,584.89 mg/kg. Research by Gonnaskran 
et al. (2014) on paddy plant from IADA KETARA, Besut 
Terangganu showed that Fe accumulation was slightly 
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lower than that from MADA averaging 2132.73 mg/kg. 
But paddy plants from Langkawi, Kedah indicated low 
Fe concentration in the roots between 0-32.59 mg/kg 
(Khairiah et al. 2013). 
	 Studies were also conducted on Fe uptake by selected 
vegetables from Kelantan and Terengganu and it was 
shown that Fe accumulation in the roots of vegetables were 
very low compared to that in the root of the paddy plants 
which were in the range of 32.74-80.65 mg/kg (Khairiah 
et al. 2014). These findings show that Fe accumulation in 
plants is vary depending on the type of the soil and plants. 
	 The variation among plants in their ability to absorb Fe 
is not consistent and is affected by the changing conditions 
of soil and stage of the plant growth. Soil conditions that 
influence the availability of heavy metals including Fe are 
pH, redox potential, organic matter, ion exchange capacity, 
clay content and Fe-Mn oxides in the soil (Helios Rybicka 
& Jędrzejezyk 1995; Rieuwerts et al. 1998). Tropical soils 
are known to contain high concentrations of Fe in the soil 
as Fe and Al oxide minerals (Habibah et al. 2014). For 
soils rich in the soluble Fe fractions, excessive Fe uptake 
can produce toxic effects on the plants. Symptoms of Fe 
toxicity are not specific and usually differ among plant 
species and the stages of their growth. The response of 
plants to Fe toxicity is highly variable among genotypes 
and plant species (Kabata-Pendias & Pendias 2001; Kim & 
Guerinot 2007; Morrissey & Guerinot 2009; Roschzttardtz 
et al. 2013).
	 The flowering white cabbage or ‘choy sam’ (Brassica 
chinensis) is an annual herb that is widely grown in 
Malaysia (Tindall 1986) and consumed daily as a 
vegetable. The leaves of the flowering white cabbage are 
either cooked and eaten as a vegetable or eaten raw in 
salads. The leafy cultivars have high nutritive value, whilst 
the heading forms have lower food value. The flowering 
white cabbage is tolerant to a wide range of soil conditions, 
including pH. This vegetable has the potential to absorb 
and accumulate high amounts of Fe thus posing a danger 
to humans as it is widely consumed daily. The aim of the 
present study was to determine the most appropriate model 
that can be used to estimate the amount of Fe uptake in 
different parts of the flowering white cabbage, namely the 
stems, leaves, and roots during the various growth stages 
until time of harvest.

MATERIALS AND METHODS

A study on the flowering white cabbage (Brassica 
chinensis var. parachinensis) was carried out at Agrotek, 
Sepang, Selangor, located approximately 95 km from 
Kuala Lumpur, Malaysia. The Sepang soil in that area 
is mainly peat soil and the study area constituted one of 
the most important agricultural areas in Selangor. Three 
different plots were selected randomly and at each plot the 
vegetables (three replicates) were harvested once every 
three days for ten sampling days. The number of samples 
collected was 24.

	 The samples were taken to the laboratory, washed in 
running tap water followed by washing in three rounds of 
deionized-distilled water. The samples were swabbed with 
tissue before being separated into the root, stem and leaf. 
Samples were then oven dried at 70ºC until the weight was 
stable, then they were ground using a mortar and pestle 
(AOAC 1984). 
	 Digestion was performed using HNO3 and HClO4 in 
the ratio (by volume) of 10:2, for three hours (AOAC 1984). 
The Fe concentration was determined by AAS (Perkin 
Elmer model 1100B). Data obtained was used to construct 
a model that can be used to determine the amount of Fe in 
the stems, roots and leaves. The detection limit for Fe and 
the recovery test are shown in Table 1. All glassware used 
for this experiment was acid soaked with 20% nitric acid 
for three days. 

TABLE 1. Detection limit for Fe

Metal Fe 
Detection limit
Recovery rate (%)

 5 μg/L
96.83%

NONLINEAR REGRESSION MODEL

The linear regression model provides a rich and flexible 
framework, however, it was not appropriate for all 
situations. There are many situations in science where the 
response variable and the predictor variables are related 
through a known nonlinear function. This would lead to a 
nonlinear regression model. Any model that is not linear for 
the unknown parameters is a nonlinear regression model. 
	 In general, the nonlinear regression model can be 
written as y = f(x, θ) + ε where θ is a p × 1 vector of unknown 
parameter and ε is an uncorrelated random error term with 
E(ε) = 0 and Var(ε) = σ2. Also, another assumption is that 
the errors are normally distributed, as in linear regression. 
Since E(y) = E[f(x, θ) + ε] = f(x, θ), then f(x, θ) is called 
the expectation function for the nonlinear regression model 
(Myers et al. 2010). In a nonlinear regression model, at 
least one of the derivatives of the expectation function, 
with respect to the parameters, depends on at least one of 
the parameters. In a linear regression, these derivatives 
are not functions of the unknown parameters. Consider a 
linear regression model y = β0 + β1x1 + β2x2 +… + βkxk + ε 
with the expectation function f(x, β) = β0 +  βjxj. Then 
∂f(x, β) / ∂βj = xj for j=0, 1,..., k where x0 ≡ 1. It should be 
noted that in the case of the linear model the derivatives 
are not functions of the β's (Piegorsch & Bailer 2005). 
	 The nonlinear regression model should be used when 
a curvilinear relationship exists between the mean response 
and a predictor variable. Fortunately, many other functions 
can serve as viable regression models for environmental 
data. These functions cannot typically be transformed or 
linearized and are therefore truly nonlinear. In the present 
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paper, the nonlinear regression model was fitted to the data 
from the flowering white cabbage leaves, stems and roots 
as the data showed a curvilinear relationship. 

PARAMETER ESTIMATES

In nonlinear regression models, one must estimate the 
initial value of the parameter that should be used in the 
model. In the present study, the Levenberg-Marquardt 
fitting algorithm was used to estimate the initial value of 
the parameters. The Levenberg-Marquardt is a modified 
version of the Gauss-Newton method. Traditionally, 
the nonlinear least square is implemented via appeal 
to the Gauss Newton method. A method widely used in 
computer algorithms for nonlinear regression models 
is linearization of the nonlinear function followed 
by the Gauss-Newton iterative method of parameter 
estimation. Linearization is accomplished by the Taylor 
series expansion of f(xi, θ). Suppose there is a sample of 
n observations on the response with the regressors, say 
yi, xi1, xi2, …, xik for i=1,2,...,n. Consider the nonlinear 
regression model  yi = f(xi, θ) + εi for i=1,2,...,n where   = 
[1, xi1, xi2, …, xik] for i=1,2,...,n. The least square function 

is S(θ) =  [yi – f(xi, θ)]2. To estimate the least-squares, it 

will be necessary to differentiate S(θ =   [yi – f(xi, θ)]2 

with respect to each element of θ. This will provide a 
set of p normal equations for the nonlinear regression 

situation. The normal equations are [yi – f(xi, θ][∂f(xi, 

θ) / ∂θj] = 0 for j =1, 2,..., p. In a nonlinear regression 
model the derivatives in the large square brackets will be 
functions of the unknown parameters. Furthermore the 
expectation function will also be a nonlinear function 
(Piegorsch & Bailer 2005).

GOODNESS OF FIT

Goodness of fit is used to check the model adequacy. For 
this purpose, the residual plot, normal plot, partial F-test 
and p-value were constructed for the data of the flowering 
white cabbage. 

RESIDUAL PLOT

Graphical analysis of the residual plot is a very effective 
way to investigate the adequacy of fit of a regression model. 
These plots are generated by the SAS package. For any 
particular observed value of y, the corresponding residual 
is e = y –   which is the observed value of y minus the 
predicted value of y, where the predicted value of y or   is 
calculated using the ‘least squares’ prediction equation. In 
the present case y refers to the Fe uptake in the flowering 
white cabbage leaves, stems or roots. If the regression 
assumptions hold, the residuals should appear like they 
have been randomly and independently selected from a 
normally distributed population and their means should 
be equal to zero and with constant variance.

NORMAL PLOT

Another way of checking the normality assumption is to 
construct a normal probability plot of the residuals. This is 
a graph designed so that the cumulative normal distribution 
will be plotted as a straight line. To make a normal plot, 
firstly the residuals must be arranged in the order of the 
smallest to the largest. The ordered residuals will be 
denoted as e(1), e(2), …, e(n) where the ith residual in the 
ordered listing will be e(i). Then e(i) is plotted on the vertical 
axis against the normal percentiles on the horizontal axis. 
If the normality assumption holds, the normal probability 
plot should have the appearance of a straight line. A normal 
plot of the residual that does not appear as a straight line, 
indicates that the normality assumption is violated (Kutner 
et al. 2004; Montgomery et al. 2001).

PARTIAL F-TEST

A partial F-test allows the test of significance of a set of 
independent variables in a regression model. That is, the 
F-test can be used to test the significance of a portion of a 
regression model. Suppose the regression assumption holds 
and consider testing H0 : βj+1 = βj+2 = … = βj+k = 0  versus 
H1: at least one of  βj+1, βj+2, …, βj+k will not be equal to 0. 
The partial F-statistics is  Fcalc = [{SSE(RM) – SSE(FM)}/
Δe]/[SSE(FM)/dfe(FM)] where SSE(RM) refers to the error 
value of the sum of squares for the reduced model, and 
SSE(FM) refers to the value of the error of the sum of 
squares for the full model.  is the number of parameters 
constrained by H0 and dfe(RM) the degrees of freedom for 
the full model. Meanwhile dfe(RM) refers to the degrees 
of freedom for the reduced model. H0 will be rejected in 
favor of an alternative at the level of significance α = 0.05 
if Fcalc is higher than .

THE p-VALUE

The p-value, or the probability value, is defined as the 
probability under H0 of observing a test statistic as extreme 
as or more extreme than that actually tested. The p-value 
is related to the Fcalc for the partial F-test as the area under 
the curve of the  Fcalc distribution to the right of Fcalc. Then, 
H0 can be rejected in favor of H1 at the level of significance 
α if the p-value is less than α. Normally α is set to be 
equal to 0.05.

FITTING THE MODEL

LINEAR REGRESSION MODEL

As a starting point, it is necessary to develop a model 
relating to the amount of Fe uptake in the flowering white 
cabbage (y) to the days of growth (x), therefore a simple 
linear regression model is assumed. The least square fit 
is  = 0 + 1x where 0 refers to the mean value of Fe 
uptake when the days of growth equal zero and 1 is the 
change in the mean value of Fe uptake associated with 
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one-unit increase in days of growth. To visualize the 
data and begin the process of assessing the model fit, a 
scatterplot is constructed. From the scatterplot of y against 
x for each of the parts of the flowering white cabbage it 
is apparent from Figure 1, Figures 2 and 3 that a clear 
curvilinear relationship is indicated.

	 It may be possible to match the observed behavior 
of the plot to one of the curves and use the linearized 
function to represent the data. However, initially the linear 
regression model will be fitted to the data. A summary 
of the SAS output of the linear regression model for the 
flowering white cabbage leaves, stems and roots are shown 
in Table 2. 

FIGURE 1. Scatterplot for Fe uptake in leaves of 
flowering white cabbage 

FIGURE 3. Scatterplot of Fe uptake in root of 
flowering white cabbage  

FIGURE 2. Scatterplot of Fe uptake in stem of 
flowering white cabbage 

TABLE 2. The parameter estimates and R2 for linear regression 
models for Fe uptake in flowering white cabbage leaves, 

stems and roots

Parameter estimates and R2 Leaves Stems Roots

Intercept
Days of growth
R2

7.081
-0.242
0.628

7.008
-0.257
0.788

6.117
-0.191
0.729

	 Hence, the regression model for each of the parts of 
the flowering white cabbage is:

	 Model for leaves,  = 7.081 – 0.242x

	 Model for stems,  = 7.008 – 0.257x

	 Model for roots,  = 6.117 – 0.191x 

where  is the fitted amount of Fe uptake in the flowering 
white cabbage and x is the number of days of growth. 
The F-test was used to test the significance of the linear 
regression model. The p-values for the model F-statistics 
of the flowering white cabbage leaves, stems and roots 
were 0.0063, 0.0006 and 0.0017, respectively. As all of 
these p-values for the model F-statistics of the flowering 
white cabbage were less than 0.05, there is strong evidence 
that the linear regression model relating to Fe uptake in 
the three parts of the flowering mustard plant to the days 
of growth were significant. 
	 Another useful measure is the value of R2, the simple 
coefficient of determination. R2 is a measure of the 
variability in amount of Fe uptake in the flowering white 
cabbage (y) that can be explained by the days of growth (x) 
of a linear regression model. It can take a value between 
0 and 1. The nearer the value of R2 is to 1, the larger the 
proportion of the total variation explained by the model, 
the greater the utility of the model in predicting y. From 
Table 2, the values of R2 for the linear regression model of 
the flowering white cabbage leaves, stems and roots were 
0.628, 0.788 and 0.729, respectively. As all of these values 
were not very close to 1, the linear regression model is not 
the best model for explaining the proportion of the total 
variation in the data of the flowering white cabbage. 
		  The plot of residual versus the predicted values 
( ) for each part of the flowering white cabbage plant are 
shown in Figures 4, 5 and 6. The residuals plots showed 
a distinct pattern, that is, they moved systematically from 
positive to negative and back to positive again as the days 
of growth increased. This indicated model inadequacy and 
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implied that the linear relationship had not captured all the 
information in the ‘days of the growth’ variable. It should 
be noted that there was apparent curvature in the scatterplot 
in Figures 1, 2 and 3. It is apparent that some other model 
form should be considered. Therefore a nonlinear model 
needed to be considered for use in the analyses. 

NONLINEAR REGRESSION MODEL

Leaves  Polynomial models are widely used in situations 
where the response is curvilinear, as even complex 
nonlinear relationships can be adequately modeled by 
polynomials over a reasonably small range of the . This 
model with an extension of the simple linear relationship is 
the addition of the higher order polynomial terms. A general 
form of the p-th order polynomial regression model is Yi 
=  β0 = β1(x – ) + β2(x – )2 + … + βp(x – )p + εi where 
i = 1, 2, …, n.
	 With the usual homogeneous-variance, the normal-
error assumption; that is εi is independent, identically 
distributed as N(0, σ2) for i = 1, 2, …, n . By assuming p < 
n – 1, there should be at least p + 1 distinguishable values 
among the  . This model is used to represent a simple 
curvilinear relationship between E[Yi] and xi (Ahmad Mahir 
et al. 2007). Parameter estimates and statistical inferences 
for this model would follow the normal linear regression 
procedures. A scatterplot of the flowering white cabbage 
leaves is shown in Figure 1. This display and knowledge of 
the production process suggest that a quadratic model may 
adequately describe the relationship between the amount 
of Fe uptake in the leaves g(x; β) to the days of growth 
(x). Thus, the polynomial model shows best fit to the data 
as shown in Table 3. The model of Fe uptake in the leaves 
is as follows:

	 g(x; β) = 1.368 – 0.242x + 0.020x2	 (1) 

From the model, 1 = –0.242 is the estimate of the linear 
effect parameter and 2 = 0.020 is the estimate of the 
quadratic effect parameter. The 0 = 1.368 is the estimate 
of the mean of g(x; β) when x = 0 if the range of the data 
includes x = 0. Otherwise this parameter has no adequate 
interpretation. 

STEMS

One possible model to account for the curvilinear effect 
a mono-exponential decay model for the stem of the 
flowering white cabbage, that is 

	 g(x; β) = β0 + β1e
–β2x	 (2)

From model (2), x refers to days of growth, g(x; β) is the 
Fe uptake, dependent on days, β0 the maximum Fe uptake 
and β1 the difference between β0 and the value of Fe uptake 
when days of growth equal 0 and β2 is a scaling term. Here 
the Levenberg-Marquardt iterative fitting algorithm was 
used. For the partial derivatives, ∂g / ∂β0 =1, ∂g / ∂β1 = e–β1x 
= e–β2x and ∂g / ∂β2 = –xβ1e

–β2x.
	 The initial values to start with in the Levenberg-
Marquardt iterative procedure, included (2). If Yi = g(x; β) 
= β0 + β1e

–β2xi, then E[Yi] = β0 + β1e
–β2x. As x → ∞ then E[Yi] 

→ β0 if β0 > 0. Hence the initial value of β0 or β00 can be 
set equal to the observed response at the highest value of 
x. In the case stated, it will be the lowest of the Yi values 
or Y1 = mini∈{1,2,…,n} {Yi}. Therefore, selection of β00 = Y1 = 

FIGURE 4. Residual plot after fitting linear regression model to 
Fe uptake in white cabbage leaves 

FIGURE 6. Residual plot after fitting linear regression model to 
Fe uptake in white cabbage roots 

FIGURE 5. Residual plot after fitting linear regression model to 
Fe uptake in white cabbage stems 
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0.193 was carried out since it was the lowest value of the 
response variable. As for the initial values of β1 and β2; 
since, the, by taking the natural logarithm on both sides, 
ln(Yi – β0) = lnβ1e

–β2xi) therefore ln(Yi – β0) = ln(β1) – β2xi.
	 If Ui = ln(Yi – β0)  and zi = –xi, by regressing Ui = ln(Yi 
– β00)  on zi  the intercept for this regression line will be 
β10 = eln β2 and the estimated slope β20 = β2. From the above 
results, the estimated β10 = e2.73314 and β20 = 0.14945  can 
be obtained. Then the nonlinear model will be fitted with 
the initial value; β00 = 0.193, β10 = 15.38111, β20 = 0.14945. 
After the initial value of the parameters are estimated, the 
next step will be to model the data of Fe uptake in the 
flowering white cabbage stems using the mono-exponential 
model. The results showed that the value of β0, β1 and β2 
converged to -0.022, 13.114 and 0.123 respectively after 
four iterations. Thus from Table 3, the fitted model for 
the flowering white cabbage stem is  g(x; β) = –0.022 + 
13.114e0.123x.

ROOTS

Scatter plots of Fe uptake in the flowering white cabbage 
roots indicate a curvilinear relationship between Fe uptake 
and days. Hence, the simple exponential model is the best 
model to fit this data is the simple exponential model :

	 g(x; β) = β0e
–β1x	 (3)

	 From model (3), the parameter β0 was the initial value 
of Fe uptake when days of growth were 0 and the parameter 
β1 was the rate of exponential decay. For this purpose, the 
Levenberg-Marquardt iterative fitting algorithm was used 
for partial derivatives of the model (3). The two derivatives 
were ∂g / ∂β0 =e–β1x and ∂g / ∂β1 = β0xe–β1x. The pseudo-
variable can be created by taking the logarithm ln g(x; β) 
= ln β0 – β1x which will be obtained. This fact can be used 
to regress the pseudo-variable. 
	 From the results, the value for parameter estimates 
of the intercept and slope were 1.95218 and 0.06686, 
respectively. Therefore, the initial estimates were  β00 = 
7.04403 and β10 = 0.06686. After the initial value of the 
parameters were estimated, the next step was to model 
the data of Fe uptake in the flowering white cabbage roots 
using the simple exponential model. The results showed 
that the value of β0 and β1 converge to 8.7703 and 0.0789, 
respectively after three iterations. Thus from Table 3, the 

fitted model for the flowering white cabbage roots is  g(x; 
β) = 8.7703–0.0789x.

RESULTS AND DISCUSSION

LEAVES

The residual and normal probability plots for the 
polynomial regression model are given in Figures 7 and 
8. The residual plot did not show any serious model 
inadequacy. The normal probability plot of the residuals 
indicated that the error distribution was approximately 
normal. The observed p-value < 0.0007, indicated that 
the polynomial model was significant. Investigation on 
the contribution of the parameters to the model is needed. 
That is, H0 : β1 = β2 = 0, needs to be tested. From the SAS 
output, SSE(RM) = 69.07930, SSE(FM) = 8.62822,  dfe(FM) 
= 7, Δe = 2. By using the partial F-test, the value of Fcalc = 
24.52 will be obtained and this value can be compared to 

 = 4.737=. As Fcalc clearly exceeded the critical point, 
it can be concluded that both the linear and the quadratic 
terms contributed significantly to the model. The other 
summary statistics for this model were R2=0.8751. As 
the value of R2 was close to 1, the model can be used to 
explain a large proportion of the total variation and will 
have great use in predicting Fe uptake in the flowering 
white cabbage leaves. Therefore the fitted model for Fe 
uptake in the leaves of the flowering white cabbage is g(x; 
β) = 1.368–0.242x + 0.020x2.

TABLE 3. The fitted model, Fcalc and p-values for the data of flowering white 
cabbage leaves,  stems and roots

Leaves Stems Roots

Model polynomial Mono-exponential simple exponential
Fitted g(x, β) = 1.368 – 0.242x + 0.020x2 g(x, β) = 0.022 +13.114e0.123x g(x; β) = 8.770e–0.079x

Fcalc 24.52 57.51 39.10
p-value <0.0007 <0.0001 <0.0001

FIGURE 7. Residual plot after fitting polynomial model to Fe 
uptake in white cabbage leaves 
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STEMS

The result for the stems of the flowering white cabbage 
indicated rapid convergence with p-value < 0.0001 
indicating that the model was very significant. To test H0 : 
β1 = β2 = 0, it was necessary to appeal to the discrepancy 
measure approach and fit a simple exponential model 
under H0. The values of SSE(RM) = 62.39362 on 9 degree 
of freedom with SSE(FM) = 3.5795 on 7 degree of freedom 
were obtained. The F-statistics were then calculated and 
compared to  = 4.737. Since Fcalc = 57.5079 and 
this value clearly exceeded the critical point, it can be 
concluded that the parameters differed from zero. This was 
confirmed by the 95% confidence interval for β1 and β2 
where 8.751 < β1 < 17.4758 and  0.0460 < β2 < 0.2005 did 
not contain zero. For model adequacy assessment, Figure 
9 gives a plot of the residual from the mono-exponential 
fit. It can be seen that generally there was random spread. 
The plot did not reveal any serious problem with inequality 

variance. The normal probability plot of the residual plot 
in Figure 10 showed that there was no indication of serious 
model inadequacies. Therefore the fitted model for Fe 
uptake in the stems of the flowering white cabbage is  g(x; 
β) = –0.022 + 13.114e0.123x. 

ROOTS

The p-value for the simple exponential model was less than 
0.0001, which means that the data exhibited significant Fe 
uptake in the roots of the flowering white cabbage. The 
parameters β0 and β1 were significant as the 95% confident 
interval, 5.5653 < β0 < 11.9744 and 0.0436 <  β1 < 0.1142 
did not include zero. To test for the model adequacy, the 
hypothesis testing used was H0 : β1 = β2 = 0 versus H1 : 
β1 ≠ 0. From the results, the value of SSE(RM) = 37.30851, 

FIGURE 8. Normal probability plot of residuals after fitting polynomial model to 
Fe uptake in white cabbage leaves 

FIGURE 9. Residual plot after fitting mono-exponential model 
to Fe uptake in white cabbage stems 

FIGURE 10. Normal probability plot monoexponential model 
for data on Fe in stems 
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SSE(FM) = 6.3375, dfe(FM) = 8, Δe = 1. Appealing this 
value to the test statistical equation gave Fcalc = 39.095. 
By comparing this value to  = 5.138,  Fcalc was 
higher than , so β1 in the simple exponential model 
was significant. The residual plot in Figure 11 appeared 
generally reasonable, although there was a slight hint that 
it increased and decreased after one point. It is reasonable 
to presume that the constant variance assumption for the 
model was not violated. The normal plot in Figure 12 of 
this model indicated that the residual spread was almost a 
straight line. Thus the normality assumption for the residual 
holds. It is clear that the simple exponential model is 
suitable to model the data for the flowering white cabbage 
roots and the fitted model is g(x; β) = 8.770e–0.0788x. 

indicating the plant activity Therefore the polynomial, 
mono-exponential and simple exponential regression 
models can be used to model the data of the flowering white 
cabbage leaves, stems and roots, respectively. 
	 Analyses through the scatterplot of all the models for 
leaves, stems and roots of the flowering white cabbage 
showed that Fe uptake was high during the first ten days. 
After that it decreased gradually until the 30th day. It can 
be concluded that Fe uptake is high in the leaves, stems and 
roots of the flowering white cabbage for the first ten days 
from sowing. It is therefore best to harvest the flowering 
white cabbage after the 10th day. 
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