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Bootstrap Intervals in the Presence of Left-Truncation, Censoring 
and Covariates with a Parametric Distribution

(Selang Butstrap dalam Kehadiran Pemangkasan Kiri, Penapisan dan Kovariat dengan Taburan Parametrik)
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ABSTRACT

Left-truncated and censored survival data are commonly encountered in medical studies. However, traditional inferential 
methods that heavily rely on normality assumptions often fail when lifetimes of observations in a study are both 
truncated and censored. Thus, it is important to develop alternative inferential procedures that ease the assumptions of 
normality and unconventionally relies on the distribution of data in hand. In this research, a three parameter log-normal 
parametric survival model was extended to incorporate left-truncated and right censored medical data with covariates. 
Following that, bootstrap inferential procedures using non-parametric and parametric bootstrap samples were applied 
to the parameters of this model. The performance of the parameter estimates was assessed at various combinations of 
truncation and censoring levels via a simulation study. The recommended bootstrap intervals were applied to a lung 
cancer survival data. 
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ABSTRAK

Data terpangkas kiri dan tertapis wujud dalam bidang perubatan dan kaedah inferensi tradisi yang sangat bergantung 
kepada andaian normal sering kali gagal apabila data tidak lengkap akibat mekanisme terpangkas dan tertapis data. 
Oleh itu, adalah menjadi keperluan untuk mengkaji kaedah selang keyakinan alternatif yang kurang bergantung dengan 
andaian lazim semata-mata, sebaliknya bergantung kepada taburan data yang sedia ada. Dalam kajian ini, model 
mandiran log-lazim dengan kehadiran kovariat dipertimbangkan untuk data perubatan yang terpangkas kiri dan tertapis. 
Seterusnya, kesesuaian selang keyakinan butstrap yang berasaskan persampelan parametrik dan bukan parametrik diuji 
untuk setiap parameter yang wujud dalam model mandirian log-lazim menerusi kajian kebarangkalian liputan. Simulasi 
data jangka hayat dijalankan pada pelbagai kombinasi peratusan data terpangkas dan tertapis. Berikutan hasil kajian 
tersebut, kaedah selang keyakinan yang dicadangkan telah diuji dengan data pesakit kanser paru-paru.

Kata kunci: Kaedah butstrap; kovariat; terpangkas kiri; tertapis rawak 

INTRODUCTION

Left-truncation occurs in a clinical survival study when 
it is not feasible to observe a patient from the time of 
contraction of a certain disease but at some time point 
later which may be due to the study design, cost or time 
constraint. This can be further explained with Figure 1. 	

	 Suppose a hypothetical study is conducted to estimate 
the distribution of survival times among lung cancer 
patients. The study begins at a2 and ended at a3. Four 
individuals Y1,  Y2,  Y3  and  Y4 are recruited from registry 
records at  k2. These individuals are diagnosed with lung 
cancer between the period of time (a1; a2) with a2 > a1. All 

FIGURE 1. Timeline for prevalence and incidence cohort
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these four individuals represent prevalence cohort whereas 
the fifth individual Y5 represents incidence cohort who 
have been observed from the beginning time point of the 
study, a2 = 0. Individual Y1 is diagnosed with lung cancer 
at b1 and followed prospectively until death occurred at  f1. 
Following that, individual Y2(Y3) is diagnosed with lung 
cancer at b2(b3) and followed prospectively until censoring 
occurs at c2(c3) due to lost from the study or the study has 
come to an end respectively. Individual Y4 is diagnosed with 
lung cancer at b4 and experience death prior to observation 
at f4 with f4 < a2. Thus, under left truncation this individual 
is excluded from the study and is assumed to be not known 
to the researcher. We can conclude that individual Y1,  Y2, 
and Y3 are left truncated with left truncation time ui = a2 – bi 
for i = 1, 2, 3. Further, individual  Y5 is diagnosed with lung 
cancer after the study begin with b2 = a2 and experience 
death at f5. Thus, for Y5, u5 = 0 and this individual is not 
left-truncated.
	 Guo (1992) equally highlighted the issue in handling 
left-truncated data when left-truncation time u could not 
be determined for certain observations in the study. One 
way is to assume a constant hazard and fit an exponential 
distribution to this data. However, erroneous due to model 
misspecification may arise. Nevertheless, since important 
date in one’s life e.g. date of diagnosis of cancer is not 
easily forgotten and well-recorded, the length of exposure 
is usually obtainable for left-truncated observations. In this 
study we assume that the date of diagnosis is available for 
all the individuals and thus the length of exposure u could 
be determined.
	 Additional factors that affect lifetime t known as 
covariates,  x are only considered from the time of entry 
into the study (Guo 1992). Therefore, the truncation 
time u contains no information on the lifetime t or t is 
independent of u. This type of data is also known as left-
truncated and right censored survival data (LTRC) which 
is usually encountered in clinical follow-up studies where 
left-truncated observations are existing cases (prevalence 
cohort) usually sampled from medical registry records. 
	 Many research works involving left-truncation are 
well established for non-parametric and semi-parametric 
models specifically in the presence of right-censoring and 
are focused on the estimation procedures of the regression 
coefficients of these models, see for example Pan and 
Chappell (2002), Shen (2012) among others. Inference 
based on parametric models are more reliable and precise 
than semiparametric models when t is known to satisfy a 
parametric distribution (Grover & Sabharwal 2012).
	 Furthermore, many existing research on left-truncation 
involving parametric models rarely accommodates 
covariates effects on the lifetimes, although this is a 
significant reason on employing these models which 
allows survival to be measured with reference to several 
covariates, see for example Balakrishnan and Mitra (2014) 
and Grover and Sabharwal (2012), among others.
	 In this study, we have considered the log-normal 
distribution as it is often used to model cancer survival data 

based on its ability to accommodate non-monotonic hazard 
rate; the hazard that increases, reaches a maximum and 
later decreases. Consequently, based on the condition that 
an ith individual is recruited in the study if and only if their 
lifetime ti ≥ ui, this causes a researcher to disregard some 
observations on the left-tail of the log-normal distribution 
subsequently resulting in a skewed data. Additionally, 
as censoring equally causes the data to be incomplete, 
assumption of normality often fails as it cannot fully 
capture the sampling distribution of the sample statistics 
being studied. As a result, inferential techniques that is 
heavily dependable on normality assumptions such as 
the Wald and likelihood ratio methods performs poorly 
with the parameter estimates of a log-normal distribution 
(Manoharan et al. 2015). On this basis, inferences such as 
significance of the parameter estimates of the log-normal 
model drawn from these intervals may not be reliable. The 
bootstrap intervals may work as an alternative, reliable 
procedure, when assumption of normality is ambiguous 
(Balakrishnan & Mitra 2014; Carpenter & Bitchell 2000; 
Manoharan et al. 2015). 
	 To the best of our knowledge, limited work is available 
on analyzing suitable confidence interval technique for 
LTRC data. In reality, we do not want a confidence interval 
method that has possibility of generating higher number 
of anticonservative (conservative) as there are higher 
(lower) probability of rejecting the true value of a desired 
parameter value where the intervals are shorter(wider) in 
length. Furthermore, asymmetrical intervals will result in 
rejecting the true value of a parameter on either end-point 
of the estimated interval where the error probability appears 
to be higher. 
	 In this study, we have extended the work of Manoharan 
et al. (2015) who showed that the Wald intervals are 
unreliable for the parameters of the LTRC model particularly 
when higher percentage of truncation and censoring is 
observed in the data. As an alternative, we examined 
the suitability of the bootstrap intervals instead namely 
normal bootstrap (n-b), bootstrap-t (b-t) and bootstrap 
percentile (b-p) using nonparametric and parametric re-
sampling techniques. The log-normal model is extended 
to incorporate observations from prevalence (existing 
cases) and incidence (new cases) cohort encountered in 
a cancer survival study whom are subjected to random 
right censoring where covariate factors which influence 
their lifetime are equally measured. The robustness of 
the bootstrap intervals was examined through a coverage 
probability study at different levels of truncation and 
censoring using nonparametric and parametric re-sampling 
techniques. The recommended inferential techniques are 
applied to a modified lung cancer survival data. 

LIKELIHOOD DERIVATION FOR LTRC SURVIVAL MODEL

The density and the survival function of the log-normal 
distribution can be extended to incorporate covariates 
through the function μ = β0 + βxi as in (1) and (2),
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	 f(ti) = 
βx

 	 (1)

	

	 S(ti) = 1 – Φ β ,	 (2)

where m the location parameter; σ the shape or nuisance 
parameter;  = (xi1, …, xiq) is the vector of q fixed 
covariates for the ith individual for i = 1, 2, …, n,  β = (β1, 
β2, …, βq); and Φ the cumulative distribution function 
of the standard normal distribution. In this research, we 
considered a single fixed covariate, where q = 1. Following 
that, the likelihood function consisting both exact and right 
censored observations for the prevalence and incidence 
cohort with ri the right censored survival times is given in 
(3) and (4), respectively.

	

(3)

	 	
		
	  (4)

where 

	
	
	 Therefore, the log-likelihood function for the n 
independent random samples consisting observations from 
both cohorts can be derived by combining the likelihood 
function as given in (3) and (4) with a truncation indicator 
variable, vi. This is defined in (5). 

	 	(5)

	

with

	
	

and the parameter vector, ψ = (σ, βo, β1). The first derivative 
of the likelihood in (5) with respect to each parameter is 
available in Appendix. The following section discusses a 
short review on bootstrap samples and intervals constructed 
using these samples.

BOOTSTRAP METHODS

Efron (1981) argued that the bootstrap method produces 
precise results as the intervals does not change under any 
transformation and reduces most of the errors in standard 
approximation methods without involving normalizing 
transformations. More related work on estimating 
bootstrap confidence intervals can be referred to Arasan 
and Lunn (2008) and Robinson (1983), among others. In 
the presence of left-truncation, bootstrap intervals based 
on nonparametric resampling procedure has been proposed 
by authors Gross and Lai (1996b), Hjort (1992) and Wang 
(1991), for LTRC data. Balakrishnan and Mitra (2014) 
indicated that bootstrap intervals based on nonparametric 
samples may not be reliable unless the sample size is 
relatively large. 
	 In this study, the bootstrap intervals namely the normal 
bootstrap (n-b), bootstrap-t (b-t) and bootstrap percentile 
(b-p) were estimated for the parameters of the LTRC model 
using nonparametric (np sim) or parametric resampling 
(pm sim) technique. The following section highlights 
theoretical properties behind the proposed bootstrap 
intervals constructed using parameter σ of the LTRC model 
as an example. These properties equally apply to the rest 
of the parameters in the model. 

NORMAL BOOTSTRAP (n-b) CONFIDENCE INTERVAL

Let  be the MLE computed from original sample data 
of size n . Following that, generate B bootstrap samples, 
of size n for b = 1, 2, …, B either using np sim or pm 
sim technique. The bootstrap estimates,  can then be 
computed from each of the bootstrap sample. The mean of 
the bootstrap estimates,  as well as the bias correction,  
bσ is given (6) and (7) where,

	 	 (6)

	 	 (7)

with the estimated bootstrap standard error, ,  is given 
as in (8) as follows:

	 	 (8)

	 Thus, the 100(1 – α)% np sim and pm sim n-b 
confidence interval for parameter σ can be estimated as in 
(9), 
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	 	 (9) 

with zα/2  and z1–α/2 are the  and 1 –  quantile of the 
standard normal distribution. 

BOOTSTRAP-T (b-t) CONFIDENCE INTERVAL

Generate B bootstrap samples of size n, for b = 1, 2, …, 
B either using np sim or pm sim technique and compute 
the standard error,  for the bootstrap samples. Here, 

 is the estimated standard error of the Bth bootstrap 
sample. Following that, for each of the bootstrap estimate, 
the Z( ) can be computed as in (10),

	 Z( ) =  	 (10)

	 In order to obtain the bootstrap percentiles, sort in 
an ascending order the values of Z( ), call it  [Z( )]q 
with q = 1, 2, …, B . Therefore, the 100(1 – α)%  np sim 
or pm sim b-t confidence interval for parameter  σ can 
be estimated as in (11), 

	 	 (11)

	 For example, at  α = 0.05 and B  = 1000, the values 
of  and  are the  and  largest values among the 1000 values 
of , e.g. . 

PERCENTILE BOOTSTRAP (b-p) CONFIDENCE INTERVAL

Generate B bootstrap samples of size n, either using np sim 
or pm sim technique and obtain the bootstrap estimates of 
parameter σ call it  from the bootstrap samples. Sort the 
bootstrap estimates,  in ascending order, call it   with 
q = 1, 2, …, B. Thus, the 100(1 – α)% np sim or pm sim b-p 
confidence interval for parameter σ is estimated as in (12), 

	 	 (12)

	

	 Following instance, for α = 0.05 and with bootstrap 
samples of B = 1000, the b-t intervals for parameter σ 
will be the 25th and 975th largest values among the 1000 

bootstrap estimates, e.g. . The coverage 

error of the b-p intervals may be substantial if the 
distribution of the parameter estimates is not approximately 
symmetric (Arasan & Lunn 2008; Carpenter & Bitchell 
2000). 

SIMULATION AND COVERAGE PROBABILITY STUDY

The simulation study proposed by Balakrishnan and Mitra 
(2014) was adopted and modified to mimic the small cell 
lung cancer survival data studied by Tai et al. (2007) 
which provided a satisfactory fit with the log-normal 
distribution. The estimates from the model proposed by 
Tai et al. (2007) were used as the true parameter values in 
the simulation study namely ψ = (σ, β0, β1) to obtain more 
realistic survival times. 
	 The month of truncation or the beginning time point 
of the study, namely y was fixed at 1st January 1983, which 
represents the start of the study. A set of random numbers 
which basically represents the months of diagnosis, do of the 
lung cancer were simulated with unequal probabilities with 
replacement before, ybk  and after the time of truncation, 
yaj where k = 1, 2, …, n1 and j = 1, 2, …, n2. Note that y > 
ybk. The percentage of left-truncated observations sampled 
from the prevalence cohort was fixed at 20% (20 pt) and 
60% (60 pt).
	 The remaining observations were incidence cohort, 
yaj observed from the beginning time point of the study 
simulated with do starting from 1st January 1983 to 31st 
January 1988. Also, the total observation, n = n1 + n2   
with doi representing combination of do for prevalence and 
incidence cohort, for i = 1, 2, …, n.
	 The lifetimes for the prevalence cohort, tk were 
simulated from the log-normal distribution as, tk = exp(σ 
+ Φ–1(1 – zk) + β0 + β1xk), for k = 1, 2, …, n1 with zk ~ 
unif(0,1), xk ~ N(0, 1)  and Φ–1 the inverse cumulative 
distribution function of the standard normal distribution. 
These observations were only retained in the study if ybk 
+ tk ≥ y, otherwise these were removed and new sets of 
random values ybk, tk, zk and xk were simulated. The left-
truncation time, uk = y – ybk. The lifetimes for incidence 
cohort, tj were simulated in the similar manner with, tj = 
exp(σ + Φ–1(1 – zj) + β0 + β1xj), for j = 1, 2, …, n2 with 
zj ~ unif (0,1) and xj ~ N(0,1). Note that for the incidence 
cohort uj = 0 as all the individuals were observed from the 
beginning time point of the study, where y = yaj.
	 The censoring times, ri were simulated from the 
exponential distribution, exp(λ) where the value of λ was 
taken as 0.0051 and 0.0082 to result the desired proportion 
of censoring of 15% (15cp) and 25% (25cp). Since in this 
study, the information on the lifetimes of individuals were 
observed only after being recruited in the study, the random 
censoring times ri + doi ≥ y. For observations where the 
condition of  ri + doi < y were not met, the random values 
of ri were removed and new values were simulated. The 
censoring indicator, δRi = 1 if ti ≤ ri and 0 otherwise. The 
lifetimes, truncation times and censoring times are non-
informative and independent of each other.
	 The simulation study was conducted using samples of 
n = 60, 80, 100 and 200 for a repetition of N = 2000 times. 
The bias, SE and RMSE were compared for the parameter 
estimates , 0 and 1 under the settings of 20% left-
truncated observations with 15% censored failure times 
(20 pt;1 5cp), 20% left-truncated observations with 25% 
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censored failure times (20 pt; 25 cp), 60% left-truncated 
observations with 15% censored failure times (60pt;15cp) 
and 60% left-truncated observations with 25% censored 
failure times (60 pt;25 cp). We used the value of RMSE, 

 to measure the overall performance of the 
estimator as it measures the average overall error of the 
parameter estimates compared to both bias and SE which 
contribute to the average error size of an estimator. Also, we 
assume that the truncation times, lifetimes and censoring 
times are all non-informative and independent of each 
other.
	 A coverage probability is the probability of a confidence 
interval containing the true parameter value, and we desire 
this value to be close to α, the nominal error probability 
(npe). A coverage probability study is a simulation study 
conducted to evaluate the performance of a confidence 
interval estimation procedure. In any coverage probability 
study, we do not want an anticonservative (conservative) 
interval, which generates coverage probability that 
is smaller (greater) than (1 – α). Further, we do not 
want an asymmetrical interval where when the larger 
error probability is less than 1.5 times the smaller one. 
Following that, a confidence interval method is termed 
anticonservative (AC) if tep is greater than α + 2.58s.e.( ),
conservative (C) if tep is less than α – 2.58s.e.( ) with 
s.e( ) = . Also, the estimated error probabilities 
are asymmetric (AS) when the larger error probabilities 
on one side of the interval is larger than 1.5 times the 
smaller one.
	 Following that, we generated 2000 samples of size n 
=30, 60, 100 and 200 with npe, α = 0.05 under the 4 settings 
indicated before. The estimated error probabilities on the 
left (lep) and right (rep) for parameter σ is calculated by 
adding the number of times the left (right) endpoint was 
more (less) than the true parameter value divided by the 
number of simulations; 2000 times. An optimal confidence 
interval method is expected to generate least number of AC, 
C and AS intervals where the value of the lep and rep are 
closer to 0.025 and the value of the tep closer to npe of 0.05. 
The np sim and pm sim re-sampling techniques applied 
with LTRC data is discussed in the following subsections.

NON-PARAMETRIC RE-SAMPLING TECHNIQUE (NP SIM)

The original data of size n consisting pairs of observations,  
(doi , ti , ri , ui , xi , δRi , vi) were re-sampled with replacement 
where doi  is the date of diagnosis, ti the survival times,  ri 

the survival times, ui the truncation times, xi, the covariates, 
δRi  and vi are the censoring and truncation indicators, 
respectively. All the chosen pairs were re-sampled with 
equal probabilities to form the bootstrap samples of size 
n, call it w* which consists pairs of ; 
estimates; The bootstrap estimates were calculated from 
w* and stored, call it d*; and The steps in (1) to (2) were 
repeated large number of times, B = 1000.

PARAMETRIC RE-SAMPLING TECHNIQUE (PM SIM)

Let  ψ be the MLE of the parameter vector ψ = (σ, β0, β1).
The MLE of ψ of ψ were obtained by fitting the log-normal 
distribution to the original data of size n consisting pairs 
of observations,  as defined above; 
The estimates of ψ were replaced for the true value ψ  in 
log-normal distribution; Bootstrap samples of size n, call 
it w* consisting pairs of ψ were generated based on the 
simulation procedure discussed; Bootstrap estimates were 
obtained from w* and stored, call it d*; and Steps in (3) to 
(4) were repeated for large number of times, say B =1000.

RESULTS AND DISCUSSION

Based on Table 1, the absolute bias decreases with the 
sample size for parameter estimate  under all settings 
although the trend seems to be unclear for 0 and 1. 
Nonetheless, none of the bias values for , 0 and 1 in 
Table 1, seems to be a concern as these estimates are 
insignificant at 5% or 10% level. On the other hand, the SE 
and RMSE are generally lower for large sample sizes under 
all settings, which however gets larger as the percentage 
of truncation and censoring increases. 
	 As expected, an increase in the proportion of 
truncation results in the rise of the number of observations 
excluded from the left-tail of the log-normal distribution. 
Thus, the sampling bias and the SE of the parameter 
estimates increases due to the loss of information from the 
removed observations. Also, as the percentage of censoring 
increases, this subsequently results in the decrease of data 
with exact failure times. Hence, the likelihood function 
will rely on the survival function with censored times 
rather than the density function with exact failure times. 
Overall, the values of SE and rmse for all the parameter 
estimates is lower at lower percentage of truncation when 
exact observations are available compared to censored 
failure times. In other words, the estimation procedure is 
most reliable under the setting of (20pt; 15cp) followed 
by (60pt; 15cp), (20pt; 25cp) and (60pt; 25cp). 
	 The bootstrap n-b (np sim and pm sim) and bootstrap 
b-p (np sim and pm sim) intervals are mostly AC and AS 
particularly with parameter σ under all settings despite 
large sample sizes, e.g.  n = 200 (Table 2). 
	 However, these intervals are satisfactory with 
parameter β0 and β1 with least number of AC, C and AS 
intervals. In contrary, the bootstrap b-t (np sim and pm sim) 
method generated least number of AC, C and AS intervals 
for all the parameter estimates although the bootstrap b-t 
(np sim) may generate AC intervals with parameter σ and β1 
at both nominal levels particularly at higher percentage of 
truncation ≥60pt and higher percentage of censoring ≥25cp. 
Also, for comparison purposes, the plot of estimated error 
probabilities using bootstrap b-t (np sim) and bootstrap b-t 
(pm sim) at highest percentage of truncation and censoring, 
e.g. (60pt; 25cp) for all the parameters σ, β0 and β1 at α = 
0.05 and α = 0.10 are depicted in Figures 2-4. 
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TABLE 2. Total number of AC, C and AS intervals using bootstrap intervals (boot) under the np and pm sim re-sampling 
technique with 15% and 25% censored failure times at α = 0.05

parameter σ β0 β1

setting boot sim AC C AS AC C AS AC C AS

20pt;15cp n-b
b-t
b-p

np
pm
np
pm
np
pm

2
1
1
0
4
4

0
0
0
0
0
0

4
4
0
0
4
4

1
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

2
2
1
0
2
0

0
0
0
0
0
0

1
0
0
0
0
0

60pt;15cp n-b
b-t
b-p

np
pm
np
pm
np
pm

2
2
2
0
4
3

0
0
0
0
0
0

4
4
0
0
4
4

0
0
0
0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
1
0
0
0

20pt;25cp n-b
b-t
b-p

np
pm
np
pm
np
pm

2
3
1
0
4
2

0
0
0
0
0
0

4
4
0
0
4
4

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
1
0
1
1

0
0
0
0
0
0

0
0
0
0
0
0

60pt;25cp n-b
b-t
b-p

np
pm
np
pm
np
pm

2
0
2
0
4
4

0
0
0
0
0
0

4
4
0
0
4
4

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

TABLE 1. Bias, SE and rmse for parameter estimates of the LTRC model with 15% and 25% censored failure times

parameter σ β0 β1

setting n bias SE rmse bias SE rmse bias SE rmse
20pt;15cp 60

80
100
200

-0.0131
-0.0090
-0.0071
-0.0037

0.0516
0.0441
0.0384
0.0273

0.0532
0.0450
0.0391
0.0275

0.0018
0.0019
-0.0006
0.0016

0.0705
0.0593
0.0535
0.0379

0.0705
0.0593
0.0535
0.0379

0.0011
0.0004
0.0005
0.0009

0.0714
0.0624
0.0534
0.0386

0.0714
0.0624
0.0534
0.0386

60pt;15cp 60
80
100
200

-0.0132
-0.0099
-0.0039
-0.0044

0.0522
0.0447
0.0410
0.0289

0.0539
0.0458
0.0412
0.0291

0.0029
-0.0009
-0.0004
0.0010

0.0738
0.0640
0.0562
0.0385

0.0739
0.0640
0.0562
0.0385

-0.0003
0.0002
-0.0025
0.0001

0.0735
0.0626
0.0567
0.0401

0.0735
0.0626
0.0568
0.0401

20pt;25cp 60
80
100
200

-0.0144
-0.0109
-0.0079
-0.0035

0.0531
0.0472
0.0421
0.0287

0.0550
0.0484
0.0428
0.0289

0.0007
0.0011
0.0029
0.0004

0.0748
0.0608
0.0572
0.0397

0.0748
0.0608
0.0573
0.0397

-0.0039
0.0040
-0.0014
-0.0004

0.0750
0.0644
0.0563
0.0408

0.0751
0.0644
0.0563
0.0408

60pt;25cp
 	

60
80
100
200

-0.0133
-0.0084
-0.0075
-0.0051

0.0556
0.0471
0.0422
0.0292

0.0571
0.0478
0.0429
0.0297

0.0003
0.0011
0.0007
0.0015

0.0777
0.0657
0.0578
0.0413

0.0777
0.0657
0.0578
0.0413

0.0001
-0.0020
-0.0015
0.0004

0.0763
0.0660
0.0574
0.0418

0.0763
0.0660
0.0574
0.0418 

	 It is clear that, the estimated lep and rep using the 
bootstrap b-t (pm sim) are closer to α / 2 as opposed 
bootstrap b-t (np sim) at both nominal levels for all the 
parameters of the LTRC model (Figures 2-4). In other 
words, the resulting tep are approximately closer to either 

npe, α = 0.05 or α = 0.10 at the highest percentage of 
truncation and censoring, 60pt; 15cp even at the highest 
percentage of truncation and censoring. The performance 
of the bootstrap b-t (pm sim) was further evaluated using a 
modified lung cancer data. Also, for comparison purposes, 
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the conventional Wald’s method (Manoharan et al. 2015) 
was equally applied with all the parameter estimates. This 
is discussed in the following section.

APPLICATION WITH LUNG CANCER DATA 

The original dataset involving small cell lung cancer 
survival data studied by Tai et al. (2007) consists cohort 
of 244 diagnosed with limited-stage small-cell lung 
cancer patients in Saskatchewan, Canada between 1981 
and 1998 whom are followed to the end of 2005. Among 
these patients, 144 are males and 100 are females. Among 
the variables recorded at the time of entry for each patient 
are time to death in months, cause of death (cod) coded 
from 1 to 4 (1 indicates death due to lung cancer, 2 died of 
other causes, 3 alive with disease, 4 alive without disease). 
Patients coded with 2, 3 and 4 were approximately 15%, 
7% and 1%, respectively, which subsequently resulted 

in 23% of right censored observations. Also, gender of 
patients were equally recorded as 0 for male and 1 for 
female, where 60% are males and the remaining 40% 
are females. The original data results satisfactory fit with 
the log-normal survival model and the gender covariate 
were insignificant at  α = 0.05 significance level (Tai et 
al. 2007). The distribution of the censored lifetimes was 
estimated by fitting the Weibull distribution to the censored 
survival times. Subsequently, the plot of log(–log *(ti))   
against  log(ti) provides graphical evidence that the Weibull 
distribution is satisfactory as the points lies almost on a 
straight line, with a goodness of fit R2 = 0.9715 (Figure 5). 
	 The modifications adopted for this purpose were as 
follows. Suppose the study commences on 1st January 1983 
and the interest of the study is to equally determine hazard 
rates and survival probabilities for individuals diagnosed 
with lung cancer for a duration of less than 25 months. 
The months of diagnosis, do were simulated with unequal 

FIGURE 3. Estimated error probabilities of β0 at α = 0.05(a) and α = 0.10 (b)

(a)	 (b)

FIGURE 2. Estimated error probabilities of σ at α = 0.05(a) and α = 0.10 (b)

(a)	 (b)

(a)	 (b)

FIGURE 4. Estimated error probabilities of β1 at α = 0.05(a) and α = 0.10 (b)



2536	

probabilities and replacement starting from 1st January 
1981 to 31st January 1982 representing the prevalence 
cohort (existing cases). In reality, these observations can 
be obtained from medical registry records. Additional 
months of do were simulated with replacement and unequal 
probability representing the incidence cohort (new cases), 
starting from 1st to 31st January 1988. Also, subjects were 
followed to the end of 31st December 2005. The number 
of observations from the prevalence cohort (existing 
cases) is set to be 195 and the rest of the observations 
were from the incidence cohort (new cases). This resulted 
in approximately 80% of left-truncated observations. 
The lifetimes from the original data, ti were added to 
the do and if the resulting failure times occurs before 1st 
January 1983, these observations were removed and new 
sets of random variables were re-simulated with similar 
probabilities of the original data. The left-truncation 
times,  ui = 1st January 1983- do for the prevalence cohort. 
The random censoring times, ri were simulated from the 
Weibull distribution, where ri ~ Weibull(λ, β) where λ = 
0.005 and β = 0.50. However, the random censoring times 
were retained provided that ri + doi ≥ y. For observations 
where the condition were not met, the values of  ri were 
removed and new values were simulated. The censoring 
indicator δRi = 1 if ti ≤ ri and 0 otherwise. This resulted 
in approximately 23% of RC lifetimes. Therefore for all 
the individuals in the study, the simulated data for the 
LTRC model consists a complete set of data of size n with 

patient ID (ID), doi
 (in months), left-truncation time ui (in 

months), lifetime ri (in months), right-censored lifetime  vi  
(in months), censoring indicator δRi, truncation indicator 
vi and covariate xi for i = 1, 2, …, 244. 
	 By comparing the results in Tables 3-5, the Wald 
and bootstrap b-t (np sim) interval appear to be slightly 
shorter in length at both nominal levels compared to 
bootstrap b-t (pm sim) specifically for parameter σ and β1 
at both nominal levels. The result following the coverage 
probability study equally indicated that the bootstrap 
b-t (np sim) intervals are anticonservative for parameter 
σ and β1 in addition that the Wald intervals are equally 
asymmetric with parameter σ. A density plot of the 
bootstrap estimates for parameter σ, β0 and β1 is produced 
to provide an overall view on whether there happens to 
be dispersion from the normal approximation (Figure 6).  
	 The vertical lines in Figure 5 indicate the original 
estimates of   = 1.1480, 0 - 3.2548 and 1 = 0.1661 
(Table 3). It can be seen from Figure 6(a) that most of the 
bootstrap estimates of parameter σ are relatively smaller 
than the value given in Table 3. This further support 
the fact that the Wald intervals are asymmetrical as the 
estimates of σ as the estimates are not centered around the 
original value. In other words, there are higher probability 
for the estimated interval to be narrower particularly for if 
the true values of the parameter σ are smaller than 1.1480. 
However, the density plot of β0 and β1 shown in Figure 
6(b) and 6(c) appear to be approximately normal with 
the bootstrap estimates of the covariate parameter β0 and 
β1  are centered around the original value of 3.2548 and 
0.1661 respectively. This indicates that intervals based on 
the Wald method is more reliable for parameters β0 and  
β1 compared to parameter σ. However, on the arguments 
that the intervals based on bootstrap b-t (pm sim) method 
is robust with the intervals being symmetric for all the 
parameters of the LTRC model even at higher percentage of 
truncation and censoring with optimum lengths following 
the coverage probability study, the significance of the 
parameter estimates are determined based on this interval. 
	 The parameter σ and β0 are significantly different from 
zero, however the gender covariate, β1 is insignificant at 

TABLE 4. 95% and 90% bootstrap b-t (np sim) with interval lengths

parameter 95% n-b (pm sim) length 90% n-b (pm sim) length
σ
β0

β1

(1.0177,1.3272)
(2.9941,3.4755)
(-0.2005,0.5043)

0.3095
0.4814
0.7048

(1.0442,1.2963)
(3.0636,3.4462)
(-0.1412,0.4434)

0.2521
0.3826
0.5846

 TABLE 3. Parameter estimates (est.), standard error (SE), 95% and 90% Wald with interval lengths

parameter est. SE 95% Wald length 90% Wald length
σ
β0

β1

1.148
3.2548
0.1661

0.0794
0.1236
0.1784

(0.9918,1.3041)
(3.0125,3.4972)
(-0.1835,0.5158)

0.3123
0.4846
0.6992

(1.0168,1.2790)
(3.0514,3.4582)
(-0.1273,0.4596)

0.2621
0.4067
0.5868

FIGURE 5. Plot of log (-log(S*
i
 (t )) against log(t ) )
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TABLE 5. 95% and 90% bootstrap b-t (pm sim) with interval lengths

parameter 95% b-t (pm sim) length 90% b-t (pm sim) length
σ
β0

β1

(1.0084,1.3408)
(3.0088,3.4723)
(-0.2030,0.5191)

0.3324
0.4634
0.7221

(1.0296,1.3026)
(3.0557,3.4399)
(-0.1327,0.4552)

0.2730
0.3842
0.5879

both nominal levels (Table 5). In other words, the effect 
of the gender covariate on the survival times of the small 
cell lung cancer patients is negligible or equally there is no 
statistical evidence at both nominal levels that male lung 
cancer patients survive longer than female lung cancer 
patients and vice-verse. Figure 7 depicts the plot of the 
survival probabilities obtained using the Kaplan-Meier 
and the log-normal estimator for the modified lung cancer 
data. It can be seen that the reduced LTRC model provides 
a satisfactory fit for the data as the estimated survival 
probabilities are approximately close to the values obtained 
using the non-parametric Kaplan-Meier estimator. 

CONCLUSION

In conclusion, the estimation procedure generated 
more accurate and efficient estimates of parameters 
when lower truncation and censoring are present in the 
data. Further, based on the results from the coverage 
probability study, the bootstrap b-t (pm sim) provided the 
best alternative for all the parameters of the LTRC model 
as opposed to the bootstrap n-b, bootstrap b-p with least 
anticonservative, conservative and asymmetrical intervals. 
A skewed distribution of the density plot of the bootstrap 
estimates provided an initial insight that dependency of 
normality assumptions would be erroneous specifically 
for the shape parameter σ of the LTRC model. Thus, 
Wald intervals which heavily dependable on normality 
assumptions are not recommended as the inference based 
on these confidence interval estimates would be bias and 
unreliable. In such cases, parametric bootstrap intervals 
are highly recommended as these intervals but are based 
on distribution of data in hand which subsequently 
relaxes the assumption of normality, robust against higher 
percentage of truncation and censoring present in the data 
and convenient as it worked well with all the parameters 
of the LTRC model. The proposed bootstrap b-t (pm sim) 
is equally applicable with parameters from similar log-
location scale models as the log-logistic distribution or 
when the assumption of normality is ambiguous. 

FIGURE 6. Density plot of the bootstrap estimates for parameter σ (a), β0 and β1 (c)

(a) (b)

(c)

FIGURE 7. Plot of estimated survival probabilities from the fitted 
distribution (solid line) and Kaplan- Meier estimator (dotted lines)
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