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Comparison of One-Step and Two-Step Symmetrization 
in the Variable Stepsize Setting

(Perbandingan Satu dan Dua Langkah Pensimetrian dalam Persekitaran Saiz Langkah Berubah-Ubah)

N. RAZALI*, Z.M. NOPIAH & H. OTHMAN

ABSTRACT

In this paper, we study the effects of symmetrization by the implicit midpoint rule (IMR) and the implicit trapezoidal rule 
(ITR) on the numerical solution of ordinary differential equations. We extend the study of the well-known formula of Gragg 
to a two-step symmetrizer and compare the efficiency of their use with the IMR and ITR. We present the experimental results 
on nonlinear problem using variable stepsize setting and the results show greater efficiency of the two-step symmetrizers 
over the one-step symmetrizers of IMR and ITR.
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ABSTRAK

Dalam kertas ini, kami mengkaji kesan pensimetrian kaedah titik tengah tersirat (IMR) dan kaedah trapezium tersirat 
(ITR) ke atas penyelesaian berangka persamaan pembezaan biasa. Kami melanjutkan kajian terkenal oleh Gragg kepada 
pensimetri dua langkah dan membandingkan kecekapan penggunaannya dengan IMR dan ITR. Keputusan uji kaji pada 
masalah tidak linear menggunakan saiz langkah yang berubah-ubah menunjukkan bahawa pensimetri dua langkah 
adalah lebih cekap berbanding pensimetri satu langkah.

Kata kunci: Kaedah titik tengah tersirat; kaedah trapezium tersirat; pensimetri

INTRODUCTION

The study of numerical methods for initial value problems 
including stiff problems has introduced several new ideas 
on stability and error propagation. Stiff ordinary differential 
equation systems arise in many different application areas 
where the components of the solution have widely different 
rates of change. These problems involving rapidly decaying 
transient components as well as steady-state ones occur 
naturally in many different situations including the damped 
spring system, control systems and chemical kinetics. 
Some studies on stiff problems have been reported in 
Auzinger and Macsek (1990), Bjurel et al. (1970), Burrage 
(1978), Enright et al. (1975), Liniger and Willoughby 
(1970) and Mazzia et al. (2012).
	 We are interested in solving ordinary differential 
equations, especially stiff problems. Symmetric Runge-
Kutta methods are considered because their numerical 
solution possesses an asymptotic error expansion in even 
powers of the stepsize h. When applied with Richardson 
extrapolation the order can potentially increase by two at 
each level of extrapolation. Gragg (1965) first proved the 
existence of an asymptotic error expansion for the explicit 
midpoint rule which laid the foundation for the application 
of Richardson extrapolation. He also introduced the 
concept of smoothing to suppress the effects of the parasitic 
oscillatory component in the numerical solution. Since 
then, the concept of extrapolation and smoothing has been 

applied in nonstiff and stiff problems by many researchers. 
Following the idea of Gragg, Chan (1989) generalized the 
smoothing technique for arbitrary symmetric Runge-Kutta 
methods. He called the process symmetrization and showed 
how it can be achieved by an L-stable method known as 
the symmetrizer that is constructed so as to preserve the 
asymptotic error expansion in even powers of stepsize 
and to provide the necessary damping for stiff problems. 
In 2012, Gorgey extended Chan’s theoretical study of 
extrapolation and symmetrization by means of practical 
implementation and experimental study. She investigated 
the two modes of symmetrization, that are, active and 
passive symmetrizations of one-step symmetrizers for 
Gauss and Lobatto IIIA methods of order 4 and 6 in the 
constant and variable stepsize settings. She analyzed the 
most efficient way of implementing symmetrization with 
and without extrapolation on order-4 and order-6 methods, 
providing evidence that the one-step symmetrizers can 
restore the classical order especially the order-4 Gauss and 
Lobatto IIIA methods (Chan & Gorgey 2013, 2011).

Symmetrization can be applied in different ways. In a 
constant stepsize setting, the possibilities are:

Active Symmetrization: Each time a symmetrized value 
is computed it is then used to propagate the numerical 
solution. Symmetrization can be performed at every step, 
every two steps or every three steps.
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Passive Symmetrization: The implementation in the passive 
mode involves computing many steps with the symmetric 
method, storing at each step the update as well as the 
internal stage values and then applying symmetrization 
where required using the stored values.

An s-stage Runge-Kutta method with stepsize h for the 
step (xn–1, yn–1)  (xn, yn) is a one-step method defined by,

	 	 (1)

where A is an s × s Runge-Kutta matrix, b and c are s × 1 
vectors of weights and abscissas, respectively. The Butcher 
tableau for the method is given by,

	
	 The method R is symmetric if -R -1 = R, where -R -1 

is the adjoint of R . If R is generated by (A,b,c), the 
algebraic characterization of symmetry is given by,

	 PA + AP = ebT, Pb = b, Pc = e – c.	 (2)

	 Here e is the s × 1 vector of units, and P is the s × s  
permutation matrix that reverses the order of the stages 
with (i, j) -th element given by the Kronecker δi,s+1–j. These 
conditions assumes that bT e = 1 and Ae = c hold. 

The stability function of a Runge-Kutta method with 
coefficients (A, b, c) is defined by

	 R(z) = 1 + zbT (I – zA)–1 e.	 (3)

	 A method is said to be A-stable if it is bounded by 1 in 
the left half-plane, that is, when ⎜R(z)⎜ ≤ 1 for z ∈  with 
Re(z) ≤ 0.

The one-step symmetrizer is generated by 

	 	 (4)

where the vector u is chosen to satisfy damping and order 
conditions (Chan & Razali 2014). While the two-step 
symmetrizer is a composition of four symmetric steps and 
is generated by,

	
			    (5)

	 Two-step symmetrizers carry twice the number of 
parameters (u and v) compared to one-step symmetrizers 
(u). This gives flexibility especially for higher order 
methods in satisfying the order and other desirable 
conditions. The stability function for one-step and two-
step symmetrizers are the same with equation (3) except 
that the coefficients (A, b, c) are now denoted as  
as given in (4) and (5), respectively.
	 In 2014, Chan and Razali have investigated the 
efficiency and accuracy of one-step and two-step 
symmetrizations for Implicit Midpoint Rule (IMR) and 
Implicit Trapezoidal Rule (ITR) in a constant stepsize 
setting. The Butcher tableau for the one-step IMR and ITR 
are,

with the stability function (3) for both methods turn out to 
be the same which is,

			    				  
	
	 	 (6) 

	 In the nonstiff case, the summation leads to the global 
error losing one power of h compared to the local error 
and behaves like an order-1 method. In the stiff case 
the symmetrizer possesses the damping property since 

 as z → ∞. As a result, the order-2 behaviour is 

retained because the local errors for all steps except the last 
are damped by  so that the global error is essentially 
determined by the local error of the last step.

The Butcher tableau for two-step symmetrization of IMR 
and ITR is given by,
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The stability function (3) for both methods turn out to be, 

	  	 (7)

	 We note that  as z → ∞ compared  
 to  for the one-step symmetrizer.

We have investigated two-step symmetrization in a 
constant stepsize setting (Chan & Razali 2014). However, 
it is unrealistic to use a constant stepsize in nearly all 
applications. Thus, a practical implementation of varying 
the step as the integration proceeds is necessary. To achieve 
a specified accuracy, we have to choose a stepsize small 
enough so that the approximate solution is close to the 
exact solution. In order to achieve this, a tolerance is 
specified and a method is designed so that at each step of 
the computation the estimated error lies within the given 
tolerance and the stepsize for the next step can be predicted 
which gives an error within the tolerance. We have seen in 
Chan and Razali (2014) that the two-step symmetrization 
in the active mode can be more accurate than the one-step 
symmetrization. Hence, we focus our attention on applying 
variable stepsize code in the active mode.

APPLICATION

Error estimation is a practical tool for choosing the right 
stepsize and ensure efficient implementation although there 
is a cost associated with it. Some techniques for estimating 
the error, for example, by local extrapolation, embedding 
technique and quadrature formula have been discussed in 

Ceschino and Kuntzmann (1963), Enright and Hull (1976), 
González-Pinto et al. (2004), Merson (1957) and Shampine 
(1985). We follow the suggestion by Gorgey (2012) to use 
symmetrization to estimate the local error because the 
results show that symmetrization give good error estimates. 
In our case, two-step symmetrization is implemented. 
The error at the n-th step is obtained by evaluating the 
difference between the update yn of the symmetric method 
and that of the symmetrizer . Examples 1 and 2 show the 
error estimation of the implicit midpoint and trapezoidal 
rules, respectively.

Example 1  Implicit Midpoint Rule

The update for the IMR is

	 yn = 2Y[n] – yn–1,		   (8)

where Y[n] is the internal stage value at the n-th step. The 
update for two-step symmetrization of IMR is given by,

	 	  (9)

The error is then given by

	 .		  (10)

Example 2 Implicit Trapezoidal Rule

The update for the ITR is

	 yn = Y[n],		  (11)

where Y[n] is the internal stage value at the n-th step. The 
update for two-step symmetrization of ITR is given by,

	 	 (12)

The error is given by (10).

In our variable stepsize code, the error estimates that we 
use are by symmetrization and the error is given by (10), 
while the starting values for the Newton iterations, the 
stopping criterion and the stepsize selection are based on 
the approach given in Hairer and Wanner (1991). Shampine 
et al. (1985) suggested that the first step is critical because 
the justification of the algorithms for the adjustment of the 
stepsize on subsequent steps depends on making small 
changes. Thus, we follow Shampine’s idea on the automatic 
selection of the initial stepsize. An experiment is carried 
out to show the efficiency of the symmetrization approach 
to error estimation for variable stepsize. We set x = x0  and 
p is the order of the method. The value of hmax and hmin are 
chosen based on the information from literature and the 
stepsize h is estimated using the automatic selection. The 
algorithm for variable stepsize setting is as shown:
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VAN DER POL

The Van der Pol (VDP) problem is a two-dimensional 
system of ODEs. This problem describes the behaviour of 
nonlinear vacuum tube circuits and was proposed by B. 
Van der Pol (Hairer & Wanner 1991). The parameter ε is a 
stiffness parameter. The stiffness of the problem increases 
with ε. The problem is represented by,

	

						      (13)

with y1(0) = 2 and y2 = (0) = 0 and integrated to X = 5 and 
ε = 10–2.

CH

The problem by Curtiss and Hirschfelder (CH)) (1952) is 
a moderately stiff problem defined by,

								      
	 ý = –50(y – cos(x)),	 (14)

with y(0) = 1 and integrated to X = 15. 

Exact solution: y(x) =  cos(x) +  sin(x) + e–50x, 
x ≥ 0. 

RESULTS AND DISCUSSION

The two-step symmetrized IMR and ITR are compared 
with the one-step symmetrization of the same method 
in active mode. The efficiency is measured in CPU time. 
In variable stepsize setting, the local errors for both IMR 
and ITR are estimated using the differences between the 
approximations for the base method and the symmetrizer 
as shown in Examples 1 and 2. Each method is plotted in 
a different colour and the abbreviation used to explain the 
graph is given in Table 1.
	 Figure 1 shows two pictures of the stepsizes for solving 
VDP problem. The picture at the top shows the solution 
of one-step and two-step active symmetrization of the 
implicit midpoint and trapezoidal rules with all accepted 
integration steps for  y1. In the picture at the bottom, the 
stepsize obtained by both methods are plotted as functions 
of x. We observe that for this problem, the two-step active 
symmetrization of IMR and ITR (2ASIMR and 2ASITR) have 
larger stepsizes than the 1AS of both methods. Larger 
stepsizes result in a reduction of computation time. For this 
particular problem, the stiffness ε = 10–2  is mild since the 
method does not converge when solving a strongly stiff 
case due to the lower order of the method. Figure 2 is the 
efficiency graphs which is a log-log plot of absolute error 
versus CPU time. In this figure, 2ASIMR and 2ASITR lie at the 
bottom of the graph indicating that it is the most efficient 
and confirm the previous statement. Figures 3 and 4 show 
the solution of active symmetrization and the stepsizes 
obtained by the IMR, the ITR and the symmetrizers for the 
CH problem, respectively. We observe that the stepsizes of 
2ASITR are larger than other methods and achieved a stable 
stepsize 0.5 followed by the 2ASIMR. This is due to the local 
errors for 2ASITR that have leading coefficients that are 
smaller in magnitude compared to one-step symmetrizer 
and restores the very accurate behaviour of the basic ITR 
method itself. The result partly reflected in the efficiency 
plots shown in Figure 4 which indicate the greater 
efficiency of two-step over one-step symmetrization.

CONCLUSION

The result in this paper proves that the two-step 
symmetrization is shown to be cost effective. The VDP 
and CH are mildly stiff low dimensional problems and the 
results show greater efficiency for two-step over one-step 

TABLE 1. Notation for numerical experiments

Abbreviation Definition Implementation
1ASIMR
1ASITR
2ASIMR
2ASITR

One-step symmetrization of IMR
One-step symmetrization of ITR
Two-step symmetrization of IMR
Two-step symmetrization of IMR

Active
Active
Active
Active
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FIGURE 1. Stepsizes for solving VDP problem

FIGURE 2. Efficiency plots for VDP problem

FIGURE 3. Stepsizes for solving CH problem
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active symmetrization, although preliminary, nevertheless 
provide an incentive to pursue two-step symmetrization. 
When a very small stepsize is used, a roundoff error 
might dominate whereas with large stepsizes, the 
accumulated truncation errors that will dominate. Hence, 
it is of interest to improve the algorithm by applying 
compensated summation to capture the round-off error in 
each individual step and minimize the effect of round-off 
error. We also wish to apply the two-step symmetrization 
with extrapolation either in active or passive modes to 
observe the behaviour of this method when solving other 
stiff problems.

ACKNOWLEDGEMENTS

The authors would like to express their utmost appreciation 
to Universiti Kebangsaan Malaysia for the grant GGPM-
2016-026 and their financial support in approving the 
research work done.

REFERENCES

Auzinger, R.F.W. & Macsek, F. 1990. Asymptotic error 
expansions for stiff equations: The implicit euler scheme. 
SIAM Journal on Numerical Analysis 27(1): 67-104.

Bjurel, B.L.S.L.G., Dahlquist, G. & Oden, L. 1970. Survey of 
Stiff Ordinary Differential Equations. Report NA 70.11, Dept. 
of Information Processing, RocalInst. of Tech., Stockholm.

Burrage, K. 1978. A special family of Runge-Kutta methods 
for solving stiff differential equations. BIT Numerical 
Mathematics 18: 22-41.

Ceschino, F. & Kuntzmann, J. 1963. Numerical Solution of Initial 
Value Problems. Dunod, Paris: Prentice Hall Inc.

Curtiss, C.F. & Hirschfelder, J.O. 1952. Integration of stiff 
equations. Proc. Nat. Acad. Sci. 38(3): 235-243.

Chan, R.P.K. 1989. Extrapolation of Runge-Kutta methods 
for stiff initial value problems. PhD Thesis, University of 
Auckland (Unpublished).

Chan, R.P.K. & Razali, N. 2014. Smoothing effects on the IMR 
and ITR. Numerical Algorithms 65(3): 401-420.

Chan, R.P.K. & Gorgey, A. 2013. Active and passive 
symmetrization of Runge-Kutta Gauss methods. Applied 
Numerical Mathematics 67: 64-77.

Chan, R.P.K. & Gorgey, A. 2011. Order-4 symmetrized Runge-
Kutta methods for stiff problems. Journal of Quality 
Measurement and Analysis 7(1): 53-66.

Enright, W.H. & Hull, T.E. 1976. Test results on initial value 
methods for non-stiff ordinary differential equations. SIAM 
Journal on Numerical Analysis 13(6): 944-961.

Enright, W.H., Hull, T.E. & Lindberg, B. 1975. Comparing 
numerical methods for stiff systems of O.D.E:s. BIT 
Numerical Mathematics 15(1): 10-48.

Gladwell, L.F.S.I. & Brankin, R.W. 1987. Automatic selection 
of the initial step size for an ODE solver. Journal of 
Computational and Applied Mathematics 18(2): 175-192.

González-Pinto, S., Montijano, J.I. & Rodríguez, S.P. 2004. 
Two-step error estimators for implicit Runge-Kutta methods 
applied to stiff systems. ACM Trans. Math. Softw. 30(1): 1-18.

Gorgey, A. 2012. Extrapolation of Symmetrized Runge-Kutta 
Methods. PhD Thesis, University of Auckland (Unpublished).

Gragg, W.B. 1965. On extrapolation algorithms for ordinary 
initial value problems. Journal of the Society for Industrial 
and Applied Mathematics: Series B, Numerical Analysis 
2(3): 384-403.

Hairer, S.N.E. & Wanner, G. 1991. Solving Ordinary Differential 
Equations II (Stiff and Differential-Algebraic Problems). 
Springer-Verlag Berlin Heidelberg.

Liniger, W. & Willoughby, R.A. 1970. Efficient integration 
methods for stiff systems of ordinary differential equations. 
SIAM Journal on Numerical Analysis 7(1): 47-66.

Mazzia, F., Cash, J.R. & Soetaert, K. 2012. A test set for stiff 
initial value problem solvers in the open source software R: 
Package deTestSet. Journal of Computational and Applied 
Mathematics 236(16): 4119-4131.

Merson, R.H. 1957. An operational Method for the Study of 
Integration Processes. Proc. Symposium Data Processing.

Shampine, L.F. 1985. Local error estimation by doubling. 
Computing 34(2): 179-190.

Centre of Research in Engineering Education and Built 
Environment
Program of Fundamental Engineering Studies
Faculty of Engineering and Built Environment
Universiti Kebangsaan Malaysia 
43600 UKM Bangi, Selangor Darul Ehsan
Malaysia

*Corresponding author; email: helyna@ukm.edu.my

Received: 	 15 November 2017
Accepted: 	22 May 2018

FIGURE 4. Efficiency plots for CH problem


