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Rational Quadratic Bézier Spirals
(Pilinan Kuadratik Nisbah Bézier)
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ABSTRACT

A quadratic Bézier representation withholds a curve segment with free from loops, cusps and inflection points. Furthermore, 
this rational form provides extra freedom to generate visually pleasing curves due to the existence of weights. In this 
paper, we propose sufficient conditions for rational quadratic Bézier curves to possess monotonic increasing/decreasing 
curvatures by means of monotone curvature tests which are based on the derivative of curvature functions. We have 
derived a simple interval of the middle weight that assures the construction of a family of rational quadratic Bézier curves 
to be planar spirals, which is characterized by the turning angle, end curvatures and the chords of control polygon. 
The proposed formulation can be used by CAD systems for aesthetic product design, highway/railway design and robot 
trajectory design avoiding unwanted curvature oscillations.
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ABSTRAK

Suatu perwakilan kuadratik Bézier akan memastikan satu segmen lengkung yang bebas daripada gelung, punding serta 
titik lengkungbalas. Selain itu, bentuk nisbahnya pula memberikan lebih kebebasan bagi menjana lengkungan yang 
menyenangkan dengan sebab kewujudan pemberat. Dalam makalah ini, kami mencadangkan semua syarat yang cukup 
untuk suatu lengkung nisbah kuadratik Bézier untuk memiliki kelengkungan yang monoton secara meningkat/menurun 
melalui ujian kelengkungan monoton, yang berasaskan pembezaan fungsi kelengkungan. Kami menafsirkan satu selang 
mudah merujuk kepada pemberat tengah yang menjamin pembinaan satu keluarga lengkung nisbah kuadratik Bézier 
sebagai suatu pilinan satah. Ia dicirikan oleh sudut putaran, kelengkungan hujung dan sisi-sisi poligon kawalan. Rumus 
yang dicadangkan ini boleh diguna pakai pada sistem CAD untuk reka bentuk produk estetik, reka bentuk lebuhraya/
landasan keretapi dan reka bentuk trajektori robot yang dapat menghindar ayunan yang tidak diingini pada kelengkungan.

Kata kunci: Kelengkungan; kemonotanan; kuadratik nisbah; lengkung Bezier; pilinan 

INTRODUCTION

Spirals have several advantages of containing neither 
inflection points, singularities and nor curvature extrema. 
Such curves are widely used in various CAD/CAM and 
Computer Graphics applications. Spirals are generally 
suitable to overcome the abrupt change in curvature, as a 
result spiral arcs are considered to be an important element 
to generate a shape preserving interpolation which gives 
‘visually pleasing’ curves  of monotone curvature. For 
some application of CAD/CAM it is important to maintain 
strictly monotone curvature along a curve segment. 
This good geometry property allows the curve segment 
contains no extraneous ‘bumps’ or ‘wiggles’, which makes 
it more readily acceptable to scientists and engineers. 
Hence, the continuity of curvature profile is an essential 
indicator for the aesthetic value of an arbitrary shape. 
Many considerable literatures are available for the stated 
matter, in Farin (1989), Higashi et al. (1988) and Yoshida 
et al. (2007).
	 A simple representation of a spiral segment which 
preserves the monotonicity of curvature function is by 
means of parametric polynomial representation. The 

Bezier-Bernstein representation is one of most common 
types of polynomial parametric curve. In general, Bézier 
curves of degree higher than two provides a greater range 
of shapes in which their flexibility makes it suitable for 
the composition of blending curves. However, a spiral 
construction by using quadratic form has an advantage 
of having a parametric representation without any cusps, 
loops and inflection points. Therefore, it will be a great 
benefit for designers to have optimal control and at the 
same time reducing the computation power and time 
significantly. 
	 Rational quadratic Bézier curves provide extra 
flexibility as compared to the original integral quadratic 
form and have been widely used in CAD/CAM and Solid 
Modeling (Farin et al. 1987; Lee 1987; Pavlidis 1983). For 
example, they are an important design tool in the aircraft 
industry (Kulfan et al. 2006); they are also used in areas 
such as font design (Farin 2014; Rusdi & Yahya 2015). 
Quadratic Bézier curves form the basis for the TrueType 
font technology, while higher order Bézier curves lie at the 
heart of PostScript and a number of draw programs like 
Adobe Illustrator (Lyche & Mørken 2008). They are also 
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known as conic splines since it can represent conic curve 
analytically. Conic sections cannot be exactly represented 
by nonrational polynomials (Hu 2014). Rational quadratic 
Bézier curves with additional of weights at control points 
offer an excellent and preferred method to represent spirals. 
There is a considerable number of studies in the literature 
which related to condition of the monotonicity of curvature 
function. Sapidis and Frey (1992) describes a geometric 
condition that indicates when a quadratic Bézier curve 
segment has monotone curvature. Ahn and Kim (1998) 
used symmetry of conics to obtain necessary and sufficient 
conditions for the curvature of the quadratic rational Bézier 
curve to be monotonic, where it has unique local minimum, 
a local maximum and both extrema. Suenaga and Sakai 
(1999) proposed necessary and sufficient conditions for 
the rational quadratic Bézier curve to be a spiral or have 
local extrema by means of differential and Descartes’ rule 
of signs. Furthermore, Frey and Field (2000) analysed 
the curvature distributions of segments of conics and the 
geometric interpretation of control points of quadratic 
rational Bézier curve to be strictly monotone is shown 
in detail. In a later paper, Li et al. (2006) presented the 
necessary and sufficient conditions of monotone curvature 
for the uniform rational quadratic B-spline segment and 
compared it to the curvature condition of rational quadratic 
Bézier curve.
	 In this paper, we propose a simple derivation of 
sufficient conditions for a quadratic rational Bézier curve to 
be a spiral. It is found that if the turning angle of the curve 
is less than or equal to 90o, then there exist a real number 
representing the weights of quadratic rational Bézier curve 
to ensure strict monotonicity of the curvature distribution. 
A family of spiral is proposed for direct construction 
of single transition segment or a piecewise curve for 
interpolation or fitting given data points. We applied the 
monotone curvature test which indicated a clear constraint 
of values of the weights. We have also derived the range of 
the weights which results with local extrema in curvature 
distribution. 
	 The paper is organized as follows; next section 
describes some basic properties of general rational 
Bézier form and its’ curvature which is used extensively 
throughout this paper. After that, we introduces rational 
quadratic Bézier curve in a standard form and its properties. 
We discuss the necessary and sufficient conditions for the 
quadratic rational Bézier curve to be a spiral subsequently. 
In this section, four essential theorems are proposed which 
depicts our results. Finally, numerical examples are given 
in final section before final conclusion is made.

RATIONAL BÉZIER FORM AND CURVATURE

The general n-th degree of rational Bézier curve has the 
form of,

	 ,  0 ≤ t ≤ 1,	 (1)

where Vi is the control points;  is the Bernstein polynomial; 
and t is a local parameter (Farin 2014). Thus wi represents 
the weight, which in practice wi > 0 ensures that weighted 
basis functions are positive and non-zero;   and 

therefore z(t) is well defined. The rational form contains 
the non-rational or better known as an integral form when 
all weights are equal to 1. The curvature is one of the most 
important shape interrogation tool of curves and surfaces 
which was established from differential geometry of 

. It is widely used in determining the quality of 
the approximated curves or surfaces and to construct fair 
interpolant curves and surfaces. In particular, it is used as 
a measure of how much a curve or surface ‘bends’ and to 
describe the shape of a curve or surface in the vicinity of 
a point on that curve or surface. For a planar parametric 
curve, the signed curvature of Z(t) is defined as stated in 
(3). The curvature of a curve is the reciprocal of radius of 
osculating circle and the curvature is zero for a straight line. 
The curvature can be computed from the first and second 
derivatives of rational Bézier curve. 

	 	 (2)

	 The signed curvature is defined as positive when the 
curve turns left and negative when it turns right as we travel 
along the curve.

	 	 (3)

	 The curvature at an end point of a general rational 
Bézier curve is given as in Sederberg (2012),

	 	 (4)

where  and h is the perpendicular distance from 
V2 to the first leg of control polygon  We need to 
find the first derivative of κ(t) to analyse the monotonicity 
of the curvature:

 
	 	 (5)

where

	

•

•
		  (6)

	 The function φ(t) is known as monotone curvature 
test. The curvature of a curve is monotonic if φ(t) ≠ 0 as t 
∈ [0,1].
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RATIONAL QUADRATIC BÉZIER CURVE

The standard form of a rational quadratic Bézier curve 
with n = 2, is given as,

	 ,  0 ≤ t ≤ 1,	 (7)

where Vi, i = 0,1,2 are the control points of the rational 
quadratic Bézier curve, w0 = w2 = 1 and w1 is the middle 
weight. It is well known that any rational quadratic 
Bézier curve is a conic segment. The curve is a segment 
of parabola when the weight w1 = 1, and the curve is a 
segment of ellipse or a segment of hyperbola when wi 
is less than or larger than 1, respectively. If the control 
polygon V0V1V2  forms an isosceles triangle, if θ is turning 
angle and w1 = cos(θ/2), then the quadratic rational Bézier 
curve is a circular arc (Lee 1987). We can easy prove these 
propositions by finding the intrinsic equation from the x 
and y component based on (6).

MONOTONICITY

Generally, the method to derive the condition for the 
existence of curvature extreme is by using monotone 
curvature test. The main idea of this method is by imposing 
some restrictions that allow the use of a single rational 
quadratic curve as a spiral segment. The following describe 
the conditions in detail. 
	 Firstly, let us assign in general that the length 
between control points are  and   
For simplicity, let m = b/a and the turning angle  where  

 The curvature 
at end points can be obtained directly from (4) as follows: 

	   and  	 (8)

	 Hence, we get m3 = κ(0)/κ(1). Second, since we 
interested in finding the interval of w1, without any loss 
of generality, we can assign the first control point as V0 
= (0, 0) and the unit vector tangent at this control point 
is . Hence, V1 = V0 + aT0, V2 = V1 + bT1  and T1 = (cosθ, 
sinθ). The sign of the curvature is positive because the 
curve segment bends to the left of T0 with respect to t. 
Substituting  Vi, (i = 0,1,2) and  Ti, (i = 0,1) into (7), we 
represent Z(t) = (x(t), y(t)) as follows, 

	 	 (9)

			 

	  	 (10)

	
	 From the first and the second derivative of Z(t), we 
obtain the cross products as,

	 	 (11)

and the dot products 
 							     
	

	 (12)

where . Finally, we obtain the curvature 
function after substituting (11) and (12) into (3). By 
using (5) and (6) we further derive the first derivative of 
curvature,

							     
	

(13)

where φ(t) = 3w1 sinθ(–1 + 2t – 2t2 – 2tw1 + 2t2w1)2mϒ  is 
a monotone curve test function. Clearly, the sign of (13) 
is depends only on a polynomial of degree 4 with respect 
to t, which we denoted as ϒ = ϒ(t), due to the fact that 3w1 
sinθ(–1 + 2t – 2t2 – 2twi + 2t2w1)

2 m and the denominator 
are positive. In order to investigate the monotonicity of 
the curvature, we re-write ϒ in the form of Bernstein 
polynomial as,

	 .	 (14)

where the coefficient of the basis functions are as follows,

	

	

	

	

	 	 (15)

	 The Bernstein basis functions are commonly used 
bases in space polynomial and preserve many useful 
properties. For convenience, we rewrite (15) in a factor 
form in the term of w1 as shown next.
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	 	 (16)

	 The following theorems define sufficient conditions 
for a single rational quadratic Bézier curve to possess 
monotonic curvature on t ∈ [0,1]. For simplicity, let 

 and  

THEOREM 1

If wL < w1 < wU and 0 < m < 1, then the curvature of 
the rational quadratic Bézier curve as stated in (7) is 
monotonically increasing. And if wU < wL and m > 1, then 
the curvature of the rational quadratic Bézier curve as stated 
(7) is monotonically decreasing.

PROOF 1

It is evident from (8) that when 0 < m < 1 we get κ(0) < 
κ(1). For κʹ(t) > 0 the sign of ϒ should be positive, so it 
will occur if ak > 0, (k = 0,1,2,3,4). First, let us write Dk, 
(k = 0,1,2,3,4) as the set of w1 for ak > 0. So the following 
Dk that corresponds to ak are; 

	

	

	 D2 = {w1 : w1 > 0}

	
 

 	 	 (17)

	 To satisfy all ak > 0, we need to obtain an interval of 

w1 from this operation, . We begin with 

	

since –1/2 < (m2 – 1)/2 < 0. Furthermore

where (1 – m2)/2m > 0. Therefore, 

	

	 Since 1 < 1 + m cosθ < 1 + m and , 
and with w1 > 0 from D2, the result is 

	 .

	 This concludes that the curvature of Z(t) is monotone 
increase as κʹ(t) > 0.  
	 Analogous to previous proof, for m > 1 we get κ(0) 
> κ(1).  Thus,  κʹ(t) < 0 which means ϒ < 0. Therefore, 
we need  for ak < 0. First, we write the following Dk that 
corresponds to ak < 0 as; 

	 	

	

	 D2 = {w1: w1 > 0}
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	 . 	 (18)

	
	 To fulfil all ak < 0 we require to obtain an interval of 

w1 that satisfies . So,

	

since (m2 – 1)/2 > 0. And

	
	

where (1 – m2) / 2m < 0. Thus 

	

	

since 1 < 1 + m cosθ < 1 + m  and  . This 

results lead to a final conclusion that the curvature of  Z(t) 
is monotonic decreasing when m > 1 and,

	 .

	 From the above theorem, we can derive the constant 
curvature conditions which result with circular arcs.

REMARK

If m = 1 then the curvature of the rational quadratic Bézier 
curve of the form (7) is constant. Hence Z(t) is a circular 
arc. By using (8), we obtain κ(1) = κ(0) as m = 1, and  

 which implies that ak = 0, 
(k = 0,1,2,3,4) from (15), indicating κʹ(t) = 0. This 
concludes that κ(t) is constant. 

THEOREM 2

Suppose that 0 < m < 1, if w1 = wL or w1 = wU, then rational 
quadratic Bézier segment Z(t) have a extremum curvature 
at t = 0 or t = 1, respectively. 

PROOF 2

From (16), if w1 = wL, then it implies that a0 = 0, and ag 
≠ 0, (g = 1,2,3,4). Since a0 is the first coefficient of ϒ so        
ϒ(0) = 0, therefore κʹ(0) = 0. However, if w1 = wU, a4 = 0, 
and af ≠ 0, (f = 0,1,2,3), so we obtain ϒ(1) = 0, therefore 
κʹ(1) = 0.
	 Similarly with above proof, we can obtain an 
extremum curvature at the endpoints at t = 0 and t = 1, if 
w1 = wU or w1 = wL respectively, when m > 1.

THEOREM 3

Suppose that 0 < m < 1, if 0 < w1 < wL  then Z(t) has a local 
minimum curvature. If w1 > wU then there exist a local 
maximum curvature of Z(t).

PROOF 3

Descartes’s Rule of sign is used to prove this theorem. First, 
the extremum of curvature exists when κʹ(t) = 0 which 
can obtained from the number of roots when ϒ(t) = 0. By 
using reparameterization,  ϒ(t) → ϒ(s), where  t∈[0,1], 

s∈[0,∞), with t = s/(1+s), we obtain ϒ(s) =  (a0 + 

4a1s + 6a2s
2 + 4a3s

3 + a4s
4), where ak, (k = 0,1,2,3,4) are 

as stated in (16). The sign of the coefficients of ϒ(s) can 
be representing by τ(s) = (a0 + 4a1s + 6a2s

2 + 4a3s
3 + a4s

4) 
since (1 + s)4 is positive. The sign of the coefficients of τ(s) 
is (–, –, +, +, +) or (–, +, +, +, +) after applying 0 < w1 < 

 and , 

respectively. There is only one sign change for the case 
of τ(s) = 0. As a conclusion, there is one positive root in 
s ∈ [0, ∞). Since ϒ(0) < 0 and  ϒ(1) > 0 in (14), we have 
one local minimum curvature. The case is the same when 
we use w1 > wU. The sequence of coefficient sign is  (+, +, 
+, –, –) or (+, +, +, +, –), which implies that there is only 
one positive root exist in the positive chase for τ(s) = 0. 
Again, since ϒ(0) > 0 and ϒ(1) < 0 in (14), there is one 
local maximum curvature of Z(t). 
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THEOREM 4

Suppose that m > 1, for the case of w1 > wL then Z(t) has a 
local maximum curvature extremum. And if 0 < w1 < wU   
then there exist a local minimum curvature of Z(t).

PROOF 4

The proposition can be easily derived from the proof of 
Theorem 3. Clearly, if we substitute  onto parameter m 

in the above theorem which give us τ(s) = – (a4 + 4a3s 

+ 6a2s
2 + 4a1s

3 + a0s
4), we will obtain Theorem 4.

NUMERICAL EXAMPLES

We present two examples of spiral drawn with rational 
quadratic Bézier curve using G1 data:  and α = 4. First, we 
generate monotonic increasing spirals with m = 0.5. The 
values of illustrated by dashed line in a shaded region as 
showed in Figure 1 in which we obtain spirals as shown in 
Figure 2. Meanwhile, the curvatures of the function as in 
Figure 3. The second example shows monotonic decreasing 
spirals with m = 1.5.  The allowable range of middle weight 
is. The spirals and the curvatures of the function are showed 
in Figures 4 and 5, respectively.

CONCLUSION

In this paper, we proposed sufficient conditions for the 
curvature of rational quadratic Béziers to be monotonic 
in . We also characterized sufficient conditions 
for the ratio of the lengths of two sides of control lines 
and middle weight of a quadratic rational Bézier curve 
to have a unique local minimum, to have a unique local 
maximum and an extreme curvature point at the end 
points. The results are obtained from monotonic curvature 
test which are based on the derivative of curvatures. We 
have successfully derived an interval of the middle weight 
to construct a family of rational quadratic spirals of either 
increasing or decreasing curvatures which can be useful 
in many applications such as a single transition curve or 

FIGURE 1. Interval of w1 for m = 0.5 and m = 1.5 shown by 
intersection of dashed line and shaded region

FIGURE 2. Spiral segments with monotonic 
increasing curvature

FIGURE 3. Monotone increasing of curvature functions

FIGURE 4. Spiral segments with monotonic 
decreasing curvature

FIGURE 5. Monotone decreasing of curvature functions
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with some simple CAD modification to produce ‘visually 
pleasing’ monotone spline of rational quadratic curve.
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