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(Penyelesaian Pecahan Persamaan Pembezaan-Kamiran Fredholm menggunakan Polinomial Laguerre)

AYŞEGÜL DAŞCIOĞLU & DİLEK VAROL BAYRAM*

ABSTRACT

The main purpose of this study was to present an approximation method based on the Laguerre polynomials to obtain the 
solutions of the fractional linear Fredholm integro-differential equations. This method transforms the integro-differential 
equation to a system of linear algebraic equations by using the collocation points. In addition, the matrix relation for 
Caputo fractional derivative of Laguerre polynomials is also obtained. Besides, some examples are presented to illustrate 
the accuracy of the method and the results are discussed.
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ABSTRAK

Tujuan utama kajian ini adalah untuk mengemukakan kaedah penghampiran berdasarkan polinomial Laguerre untuk 
mendapatkan penyelesaian pecahan linear persamaan pembezaan-kamiran Fredholm. Kaedah ini menjelmakan 
persamaan pembezaan-kamiran ke sistem persamaan aljabar linear dengan menggunakan titik-titik kolokasi. Di samping 
itu, hubungan matriks untuk terbitan pecahan Caputo polinomial Laguerre juga diperoleh. Selain itu, beberapa contoh 
dibentangkan untuk menggambarkan ketepatan kaedah dan hasilnya dibincangkan.

Kata kunci: Persamaan pembezaan-kamiran Fredholm; persamaan pembezaan-kamiran pecahan; polinomial Laguerre

INTRODUCTION

Integro-differential equations play an important role in 
the modeling of numerous of physical phenomena from 
science and engineering. Hence, searching the exact and 
approximate solutions of integro-differential equations 
have attracted appreciable attention for scientists and 
applied mathematicians (Dzhumabaev 2018; Fairbairn 
& Kelmanson 2018; Hendi & Al-Qarni 2017; Kürkçü 
et al. 2017; Rahimkhani et al. 2017; Rohaninasab et al. 
2018; Yüzbaşı & Karaçayır 2017). The fractional calculus 
represents a powerful tool in applied mathematics to 
study a myriad of problems from different fields of 
science and engineering, with many break-through results 
found in mathematical physics, finance, hydrology, 
biophysics, thermodynamics, control theory, statistical 
mechanics, astrophysics, cosmology and bioengineering 
(Abbas et al. 2015). Since the fractional calculus has 
attracted much more interest among mathematicians and 
other scientists, the solutions of the fractional integro-
differential equations have been studied frequently in 
recent years (Alkan & Hatipoglu 2017; Hamoud & 
Ghadle 2018a, 2018b; Ibrahim et al. 2015; Kumar et al. 
2017; Ma & Huang 2014; Nemati et al. 2016; Ordokhani 
& Dehestani 2016; Parand & Nikarya 2014; Pedas et al. 
2016; Shahooth et al. 2016; Turmetov & Abdullaev 2017; 
Wang & Zhu 2016; Yi et al. 2016). The methods that are 
used to find the solutions of the linear fractional Fredholm 
integro-differential equations are given as fractional 

pseudospectral integration matrices (Tang & Xu 2016), 
least squares with shifted Chebyshev polynomials (Mahdy 
et al. 2016; Mohammed 2014), least squares method 
using Bernstein polynomials (Oyedepo et al. 2016), 
fractional residual power series method (Syam 2017), 
Taylor matrix method (Gülsu et al. 2013), reproducing 
kernel Hilbert space method (Bushnaq et al. 2016), second 
kind Chebyshev wavelet method (Setia et al. 2014), open 
Newton method (Al-Jamal & Rawashdeh 2009), modified 
Homotopy perturbation method (Elbeleze et al. 2016), 
Sinc collocation method (Emiroglu 2015). 
 Laguerre polynomials are used to solve some integer 
order integro-differential equations. These equations are 
given as Altarelli-Parisi equation (Kobayashi et al. 1995), 
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation 
(Schoeffel 1999), Pantograph-type Volterra integro-
differential equation (Yüzbaşı 2014), linear Fredholm 
integro-differential equation (Baykus Savasaneril & Sezer 
2016; Gürbüz et al. 2014), linear integro-differential 
equation (Al-Zubaidy 2013), parabolic-type Volterra 
partial integro-differential equation (Gürbüz & Sezer 
2017a), nonlinear partial integro-differential equation 
(Gürbüz & Sezer 2017b), delay partial functional 
differential equation (Gürbüz & Sezer 2017c). Besides, 
Laguerre polynomials are used to solve the fractional 
integro-differential equation (Mahdy & Shwayyea 2016).
 Consider the following linear fractional Fredholm 
integro-differential equation,
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 n – 1 < α < n, n ∈ N,

 (1)

with the following initial conditions: 

 (j)(0) = cj    j = 0, 1, …, n – 1. (2)

where Dαy(x) indicates the Caputo fractional derivative 
of y(x); K(x, t) and g(x) are given functions, x and t are 
real variables varying in the interval [0, 1] and y(x) is the 
unknown function to be determined. Now, we give the 
definition and the basic properties of the Caputo fractional 
derivative as follows:

Definition (Podlubny 1999). The Caputo fractional 
differentiation operator Dα of order α is defined as follows:

 

where n – 1 < α < n, n ∈ +. Besides, Caputo fractional 
derivative of a constant function is zero and Caputo 
fractional differentiation operator is linear (Herrman 2014).
 The aim of this study was to give an approximate 
solution of the problem (1)-(2) in the form,

 y(x) ≅ yN(x) =  aiLi(x) (3)

where ai are unknown coefficients; N is chosen any positive 
integer such that N ≥ n; and Li(x), (i = 0, 1, …, N) are the 
Laguerre polynomials of order i defined by Bell (1968),

 Li(x) = 

MAIN MATRIX RELATIONS

In this section, we will construct the matrix forms of each 
term of (1). Firstly, we can write the approximate solution 
(3) in the matrix form, 

 yN(x) = L(x)A,    (4)

where 

 L(x) = [L0(x)  L1(x)  …  LN(x)] and  A = [a0  a1  …  aN]T.

 Now, we will state a theorem that gives the Caputo 
fractional derivative of Laguerre polynomials in terms of 
Laguerre polynomials:

Theorem: Let Li(x) be Laguerre polynomial of order i, 
then the Caputo fractional derivative of Li(x) in terms of 
Laguerre polynomials are found as follows:

 DαLi(x) = x–α 

 i = ,  + 1, … (5)

for 0 < x < ∞,  where [α] denotes for the ceiling function 
which is the smallest integer greater than or equal to α.

Proof Let us begin derivating the Laguerre polynomials 
with the definition of them,

 DαLi(x) = Dα 

By the linearity of Caputo fractional derivative, we get

 DαLi(x) =  Dα(xk).

Using the Caputo fractional derivative of xk

 Dαxk =     k = 0,1,2, …

we obtain,

 DαLi(x) = Γ    i = ,  + 1, …

 At this step, by taking x–α out of the series and using 
the Laguerre series of the function xk given in the reference 
by Lebedev (1972),

 xk = k!  Lj(x),  0 < x < ∞,  k = 0,1,2  …,

we have the relation (5).

MATRIX REPRESENTATION FOR THE DIFFERENTIAL PART

Now, we will write the matrix form of the differential part 
of the (1). It is obviously seen that 

 DαL(x) = [DαL0(x)  DαL1(x) … DαLN(x)] (6)

The right hand side of this equation can be expressed as,
                  
 DαL(x) =x–αL(x)Sα (7)

where Sα is an (N + 1) dimensional square matrix denoted 
by, 

Sα= 
   .
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Here, the Ak,i terms in the entries of Sα are defined as:

 Ak,i = 

 Then, using (4) and (7) the differential part of the (1) 
can be expressed as, 

 Dαy(x) = DαL(x)A = x–αL(x)SαA. (8)

MATRIX REPRESENTATION FOR THE INTEGRAL PART

Let us define the integral part of the equation by,

 I(x) =  K(x, t)y(t)dt

and then we assume the kernel function can be expanded on 
the truncated series of Laguerre polynomials with respect 
to the second variable t as,

 K(x, t) ≅  kn(x)Ln(t).

Therefore, the kernel can be written in the matrix form,

 K(x, t)  = K(x)LT(t) 

where K(x) = [k0(x)  k1(x)  …  kN(x)]. Hence, the matrix 
representation of the integral becomes

 I(x) =  K(x)LT(t)L(t)Adt = K(x)Q A (9)

where Q = [qij] and qij =  Li(t)Lj(t)dt,   i, j = 0,1, …, N.

MATRIX RELATION FOR THE CONDITIONS

The relation between L(x) and its derivatives of integer 
order is given by Yüzbaşı (2014) as, 

 DiL(x) = L(x)Mi,  i = 0,1,2 …  (10)

where the matrix M is given as

 M = 

 Using the relation (10) the corresponding matrix forms 
of the conditions defined in (2) can be written as,

 yj(0) = L(0)MjA = cj,  j = 0,1,…, n – 1 (11)

 Here, the matrix L(0)Mj is named as Uj where it is an  
1 × (N + 1) dimensional matrix. Hence, the equation (11) 
becomes,

 UjA = cj,    j = 0.1, …, n – 1.  

METHOD OF SOLUTION

To obtain the approximate solution of (1), we compute the 
unknown coefficients by using the following collocation 
method. Firstly, let us substitute the matrix forms (8) and 
(9) into (1) and thus we obtain the matrix equation, 

 Dαy(x) = g(x) +  K(x, t)y(t)dt 

 x–αL(x)SαA = g(x) + K(x)Q A  (12)

By substituting the collocation points xs > 0 into (12), we 
have a system of matrix equations  

 xs
–αL(xs)SαA = g(xs)Q A,   s = 0,1, …, N.  (13)

This system can be written in the compact forms:

 XαLSαA = G + KQA

or
             
        {XαLSα – KQ}A = G (14)

where 

 Xα =     

 L =      K =       G = 

g(x0)
g(x1)

g(xN)

 Denoting the expression in parenthesis of (14) by 
W, the fundamental matrix equation for (1) is reduced to 
WA = G which corresponds to a system of (N + 1) linear 
algebraic equations with unknown Laguerre coefficients 
a0, a1, …, aN.
 Finally, to obtain the solution of (1) under the conditions 
(2), we replace the n rows of the augmented matrix 
[W; G] with the rows of the augmented matrix [Uj; cj]. 
In this way, the Laguerre coefficients are determined by 
solving the new linear algebraic system.

NUMERICAL EXAMPLES

In this section, we apply the method to two examples and 
we have performed all of the numerical computations using 
Mathcad 15. We also use the collocation points by using 
the formula xs = .



254 

Example 1 Consider the following fractional integro-
differential equation,

       0 ≤ x, t  ≤ 1,         

subject to y(0) = 0 with the exact solution y(x) = x2 – x. 
 The collocation points for  N = 2 becomes x0 = 0.25, 
x1 = 0.75, x2 = 1. The main matrix equation of this problem 
is given by

 {X1/2LS1/2 – KQ}A = G

where the matrices are,

 X1/2 =    L =     

 G =    K = 

 Q = .

 
 Also, the matrix forms of the initial condition is 
calculated as U0 = L(0) = [1   1   1].
 By solving this system we get a0 = 1, a1 = –3, a2 = 2. 
When we substitute the determined coefficients into (3), 
we get the exact solution.
 This problem is also solved by Mahdy et al. (2016), 
Mohammed (2014) and Oyedepo et al. (2016). Mahdy et al. 
(2016) and Mohammed (2014) had found an approximate 
solution for N = 7 and N = 5, respectively; but they didn’t 
state the numerical results of the errors of their methods. 
They had said that their solutions were in agreement with 
the exact solution according to the graphs of the solution. 
Hovewer, it is not enough to say that they have found the 
exact solution, since their graphs are drawn at 0.1 scale. 
Oyedepo et al. (2016) had found the approximate solution 
with the maximum absolute error  4.10–5 and 1.10–4 by 
the standard least squares method and the perturbed least 
squares method, respectively. By the proposed method, we 
have found the exact solution of the problem for N = 2. 
Apparently, our method is better than the other methods.

Example 2 Consider the following fractional integro-
differential equation

 

 0 ≤ x, t ≤ 1,         

subject to y(0) = 0 with the exact solution y(x) = x2. 

 The collocation points for  N = 2 becomes x0 = 0.25, 
x1 = 0.75, x2 = 1. The main matrix equation of this problem 
is given by,

 {X5/3LS5/3 – KQ}A = G

where  L and Q matrices are the same as in the Example 
1 and the others are given by,

 X5/3 = ,   K =     

 G = .

 
 

 Also, the matrix forms of the initial condition is 
calculated as U0 = L(0).
 By solving this system, we get a0 = 2, a1 = –4, a2 = 2. 
When we substitute the determined coefficients into (3), 
we get the exact solution.
 This problem is also solved by Mahdy et al. (2016) and 
Mohammed (2014), and they had found an approximate 
solution for  N = 7 and N = 5, respectively. As in previous 
example, we do not have any numerical results to compare 
the methods. By the proposed method, we have found the 
exact solution of the problem for N = 2. Apparently, our 
method is better than the other methods.

Example 3 Consider the following fractional integro-
differential equation

      0 ≤ x, t ≤ 1,         

subject to y(0) = 0 with the exact solution y(x) = x3/2 + x. 
 We write the main matrix equation of this problem as 
follows:

 {X1/2LS1/2 – KQ}A = G.

 The absolute errors of our method are compared with 
the second kind Chebyshev wavelet method (Setia et al. 
2014) in Table 1. It is seen that our method gives better 
results than the other method.

Example 4 Consider the following fractional integro-
differential equation

 

 0 ≤  x, t ≤ 1,         

subject to y(0) = 0 with the exact solution y(x) = x – x3. 
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 We write the main matrix equation of this problem as 
follows:

 {X5/6LS5/6 – KQ}A = G.

 This problem is also solved by Mohammed (2014) and 
Oyedepo et al. (2016). To compare, Mohammed hadn’t 
found the exact solution. He had found an approximate 
solution for  N = 5 but he didn’t state the numerical 
results of the errors of the method. The absolute errors of 
our method are compared with the standard least squares 
method (Oyedepo et al. 2016) and perturbed least squares 
method (Oyedepo et al. 2016) in Table 2.  It is seen that 
our method gives better results than the other methods.

CONCLUSION

In this study, a collocation method based on Laguerre 
polynomials has been introduced for solving the fractional 
linear Fredholm integro-differential equations. For this 

purpose, the matrix relation for the Caputo fractional 
derivative of the Laguerre polynomials has been obtained 
for the first time in the literature. Using these relations and 
suitable collocation points, the integro-differential equation 
has been transformed into a system of algebraic equations. 
The method is faster and simpler than the other methods 
in the literature.
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