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ABSTRACT

Climate Forecast System version 2 (CFSv2) is the ocean-atmosphere-land coupled model and the latest version of seasonal 
climate forecast from National Centers for Environmental Prediction (NCEP). This study presents the prediction skill of 
seasonal precipitation and surface air temperature forecasting from CFSv2 over Southeast Asia. The objective of the 
study was to verify the prediction accuracy of CFSv2 by quantifying the deterministic quantities in term of correlation 
coefficients with respect to different lead times and target seasons based on a the 28-year ensemble means (1983/84 - 
2010/11) for each variables. Additionally, the prediction skill of 20 sub-regions over Southeast Asia are verified with 
observation for regional assessment of the accuracy of seasonal precipitation and surface air temperature forecasted 
by CFSv2. In general, the result showed that the prediction skill of CFSv2 for seasonal precipitation and surface air 
temperature forecasting is reasonable, especially prediction skill after lead month-0 for all target seasons compared to 
other lead months. The lowest prediction skill is after lead month-6. Overall, the prediction skill of seasonal surface air 
temperature forecasting is better than precipitation. Moreover, the result obtained in this study highlights the advantages 
of using an ensemble technique for seasonal forecasting in Southeast Asia.
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ABSTRAK

Sistem Ramalan Iklim versi kedua (CFSv2) merupakan sebuah model laut-atmosfera-darat berpasangan dan versi terkini 
model peramalan iklim bermusim dari Pusat Kebangsaan untuk Ramalan Sekitaran (NCEP). Kajian ini mengemukakan 
kemahiran ramalan kerpasan dan suhu udara permukaan bermusim dari CFSv2 di Asia Tenggara. Objektif kajian ini 
adalah untuk mengesahkan ketepatan ramalan CFSv2 dengan mengukur kuantiti deterministik dalam istilah pekali 
korelasi berdasarkan analisis terhadap min kelompok 28 tahun (1983/84-2010/11) bagi setiap pemboleh ubah pada 
masa bulan kedepan dan sasaran musim yang berbeza. Tambahan pula, kemahiran ramalan 20 subkawasan di Asia 
Tenggara dikesahkan dengan pemerhatian untuk melihat secara terperinci ramalan kerpasan dan suhu udara permukaan 
bermusim yang telah diramalkan oleh CFSv2. Secara umumnya, keputusan menunjukkan bahawa kemahiran ramalan 
CFSv2 bagi ramalan kerpasan dan suhu udara permukaan bermusim adalah munasabah terutama sekali kemahiran 
ramalan selepas 0-bulan kedepan untuk kesemua sasaran musim berbanding dengan bulan kedepan yang lain. Kemahiran 
ramalan paling rendah adalah selepas 6-bulan kedepan. Secara keseluruhannya, kemahiran ramalan bagi peramalan 
suhu udara permukaan adalah lebih baik daripada kerpasan. Tambahan pula, kajian ini telah menekankan kelebihan 
menggunakan teknik kelompok bagi peramalan bermusim di Asia Tenggara. 

Kata kunci: Asia Tenggara; NCEP CFS; penilaian kemahiran ramalan; peramalan bermusim; teknik berkelompok

INTRODUCTION

Seasonal forecasting has improved in recent years by 
using the ensemble forecasting technique. Climatologist, 
in particular, developed a better seasonal forecast 
model by grouping a number of forecasts of different 
initial conditions simultaneously due to socioeconomic 
demands in terms of climate forecasting accuracy, such 
as precipitation. Specifically, in this area of research, 
climate forecast systems are referred to as ensemble climate 
forecasting, which evaluate and forecast the quality of 
climate elements like temperature and precipitation in order 
to enhance forecasting performances. Ensembles are only 

finite sets of deterministic forecast realizations that initiated 
from different primary conditions or are subject to different 
boundary conditions, thought to represent samples from an 
underlying flow-dependent forecast probability distribution 
(Weigel 2012). Weigel (2012) indicated that ensembles are 
usually interpreted and applied as probabilistic forecasts 
practically and necessarily involving further statistical 
assumptions. Some modelling with ocean-atmosphere 
coupled model systems has improved and updated seasonal 
prediction systems to robust and trusted second generation 
by physics improvements and increased resolution (Saha et 
al. 2006; Yuan et al. 2011), for instance, National Oceanic 
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and Atmospheric Administration’s (NOAA) National 
Centers for Environmental Prediction (NCEP) Climate 
Forecast System version 2 (CFSv2) and the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
System 4. There has been a substantial improvement 
after lead month-1 forecast skill of 2 m temperature 
(T2m) and precipitation (PRCP) relative to CFSv1 over the 
conterminous United States (CONUS) (Yuan et al. 2011). 
	 A few years ago, forecast skill of precipitation and sea 
surface temperature (SST) were examined and systematic 
biases were found relative to CFSv2 for the Northern 
Hemisphere winter and Asian summer monsoon over the 
globe (Kim et al. 2012). CFSv2 has also been found to 
have a systematic cold bias in the central-eastern equatorial 
Pacific during summer/fall in SST for the periods 1982-1998 
and 1990-2010, respectively (Xue et al. 2013). Jiang et 
al. (2013) found that CFSv2 increased skill in predicting 
precipitation and large-scale monsoon circulation features 
but decreased skill for the South Asian monsoon, although 
some biases in the CFSv1 (Yang et al. 2008) still exist in 
the CFSv2, especially the weaker-than-observed western 
Pacific subtropical high and the exaggerated strong link of 
the Asian Summer Monsoon (ASM) to El-Nino Southern 
Oscillation (ENSO).
	 The questions raised in this paper ask whether the 
forecast skill (prediction skill) of CFSv2 over Southeast 
Asia is reasonably good for targeted lead month times in 
four target seasons. This study only focuses on assessing 
the accuracy of NCEP CFSv2 of Southeast Asia in term of 
correlation between CFSv2 with selected observational 
dataset. Southeast Asia is typically known as a tropical 
region that has variability in terms of precipitation and 
surface temperature due to unique famous phenomenon 
like monsoon and ENSO effects. Thus, this study only 
focuses on the precipitation and surface air temperature 
received in this region as forecasted by NCEP CFSv2. Many 
countries in Southeast Asia depend on seasonal forecasting 
systems advanced by the seasonal forecast system model 
development of countries such as the USA in order to help 
decision makers prepare for unwanted disasters like flood 
and drought, which are very common in certain seasons. 
The result of current study can be crucial to enhance the 
Southeast Asia adaptation capacity in providing timely 
climate information for disaster mitigation as regional 
climate variabilities are expected to enlarged under warmer 
global climate. Pin et al. (2013) showed that the identifying 
the necessity of climatic research and development avenues 
as a priority to a developing country as they have limited 
resources to address the diversity of climate change issues. 

MATERIALS AND METHODS

The retrospective forecast (hindcast) data used in this 
study is the 6-hourly time series from the 9-month runs 
(CFS Reforecast ‘First Look’ Time Series from NCEP 
CFSv2). The reforecast of CFSv2 consists of the NCEP 
Global Forecast System at T126 (~0.937⁰) resolution, the 

Geophysical Fluid Dynamics Laboratory Modular Ocean 
Model version 4.0 at 0.25⁰-0.5⁰ grid spacing coupled 
with a two-layer sea ice model, and the four-layer NOAH 
land surface model. CFSv2 is a fully coupled general 
circulation model (GCM) that provides a period of 28-years 
from 1982/83 to 2010/11 ensemble hindcast dataset with 
24 members (Saha et al. 2006). This dataset is a set of 
9-month reforecasts initiated from every 5th day, with four 
ensemble members (4 cycles) for the period 1982-2010, 
and the NCEP Climate Forecast System Reanalysis dataset 
is used as the dataset’s initial condition for the atmosphere 
and ocean (Saha et al. 2010). NCEP compiled the monthly 
estimates as follows: The retrospective data with initial 
dates after 7th of that month were used as the ensemble 
members of the next month for each calendar month (Yuan 
et al. 2012). For instance, the starting dates for the February 
ensemble members are January 11th, 16th, 21th, 26th, 31st and 
February 5th, therefore, the total ensemble for six dates in 
February is 24. However, only 16 ensemble members of 
each precipitation (PRCP) and surface air temperature (SAT) 
variable is chosen in this study during the particular dates 
from the period 1983/84 until 2010/11, with consideration 
of lead time of month-0, month-1, month-3 and month-6 
(LM0-6) for four seasons: December-January-February 
(DJF), March-April-May (MAM), June-July-August (JJA) 
and September-October-November (SON). 
	 The reference data set used for the PRCP of the CFSv2 
forecast evaluation is the Global Precipitation Climatology 
Centre (GPCC) monthly precipitation dataset, available 
from 1901 until the present and calculated from the global 
station data (Schneider et al. 2017) and Climate Prediction 
Centre (CPC) Global Temperature data provided by the 
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (CPC Global 
Daily Temperature 2018) for SAT (Kim et al. 2012; Yuan 
et al. 2011). All retrospective forecast data is interpolated 
first to standard 1.0⁰ × 1.0⁰ resolution (360 × 180) to match 
the grids of the reference datasets. It must be noted that the 
calculation of the datasets between PRCP hindcast and GPCC 
are only over land grids on monthly time scales. The two 
variable hindcast datasets of CFSv2 are total precipitation 
rate (kg/m2/s converted to monthly precipitation mm/
month) and surface temperature (from Kelvin to degree 
Celsius). Then, the correlation coefficients between the 
CFSv2 (Climate forecasting model) and reference data 
set selected were computed grid-by-grid to assess the 
prediction skill of CFSv2 (Figure 1).

RESULTS AND DISCUSSION

The deterministic quantities of the forecast model in this 
context of study include seasonal prediction skill, which 
is quantified by calculating each grid cell of the product-
moment correlation coefficients between the reference 
data set and forecast ensemble mean series (hindcast) 
(Wilks 2006; Yuan et al. 2011). The correlation coefficient 
between GPCC (CPC) and PRCP (SAT) anomaly of CFSv2 
hindcast products is calculated for the ensemble mean 
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determined from the 28 of each target season (DJF, MAM, 
JJA and SON). Figure 2 illustrates geographic distributions 
of prediction skill for CFSv2 after lead times of month-0 
(LM0), month-1 (LM1), month-3 (LM3) and month-6 
(LM6) for precipitation forecast over land grids for DJF, 
MAM, JJA and SON. Overall, CFSv2 has high predictive 
skill in PRCP (r > 0.20; refer Figure 2(d), 2(h), 2(l) & 
2(p)) in SON, especially over East Malaysia (Sabah and 
Sarawak), Brunei, Philippines, Cambodia, Laos, Vietnam, 
Timor-Leste and East Indonesia in August (LM0) (Figure 
2(d)). The prediction skill after LM0 is the highest and 
decreases as the lead times of month increases. However, 
the prediction skill for other seasons is inconsistent as the 
lead times of month increases. For instance, prediction 
skill after LM3 (LM6) is the highest in JJA (MAM) and 
lowest prediction skill after LM1 in DJF.
	 Additionally, this study executes the calculation of 
the product-moment correlation coefficients in 20 sub-
regions covering Southeast Asia (Figure 4) based on Ngai 
et al. (2017) for further review of CFSv2 prediction skill. 
Figure 3 presents the correlation coefficient for the PRCP 
anomaly from hindcast after LM0-6 over 20 sub-region 
land grids in DJF, MAM, JJA & SON. The prediction skill 
for PRCP in DJF (Figure 3(a)) is greatest (correlation larger 
than 0.40) over Region 7 (East Indonesia) from hindcast 
after all lead times of month except LM1. On average, 
Region 11(Java) is the lowest skill from hindcast after all 
month lead times but the lowest prediction skill is after 
LM3 & LM6 in Region 17-18 (Vietnam-Thailand) and 
LM1 in Region 8 (West Papua New Guinea). Region 1-2 
(Sarawak & Philippines), Region 5 (Borneo) and Region 
16-20 (Vietnam, Thailand, Laos, Cambodia and Burma) 
has inconsistent low prediction skill almost after all lead 
months. Kim et al. (2012) found wet bias in CFSv2 model 

system from hindcast after LM0 in winter season along 
the South Pacific Convergence Zone (SPZC) and Southern 
Indian Ocean as well as Western Pacific. 
	 Roughly, Region 9-10 (Timor Leste-East Indonesia), 
Region 13 (Peninsular Malaysia) and Region 14-15 
(North Sumatra-South Thailand) have average prediction 
skill. Wet bias also commonly found in East Asia and 
equatorial Atlantic in CFSv2 and SYS4 model systems 
from hindcast after LM0 in winter season (Kim et al. 
2012). The most skillful prediction skill for PRCP in 
this season is from hindcast after lead times of month-0 
followed by month-3 and month-6. Tangang et al. 
(2012) reported that climate in Malaysia is strongly 
influenced by natural climate variabilities associated 
with two large oceans i.e. the Pacific Ocean to the east 
and the Indian Ocean to the west and there was a shift 
resulting in the strengthening of the ENSO-Malaysia 
precipitation relationship and the weakening of the ENSO-
Indonesia precipitation relationship (Tangang & Juneng 
2004) which could affect the skillfulness of the CFSv2 
prediction skills in DJF over these sub-regions in Southeast 
Asia.
	 The prediction skill for PRCP in MAM (Figure 3(b)) 
is greatest (correlation larger than 0.40) over Region 3 
(Sarawak & North Kalimantan) from hindcast after LM0 
and LM1. Region 15-16 (South Thailand-South Cambodia) 
has no skill from hindcast after LM3 whilst Region 18 
(Laos) after LM0-1and Region 19-20 (Thailand-Burma) 
after LM1. Region 6 (Sulawesi) almost for all month lead 
times. For other regions like Region 7 (East Indonesia), 
Region 12 (South & West Sumatra) and Region 14 (North 
Sumatra) have inconsistent low and high prediction skill 
from hindcast after all lead times of month. Overall, the 
most skillful prediction skill for PRCP in this season is 

FIGURE 1. The flow chart of research methods
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FIGURE 2. The spatial patterns of correlation coefficients between CFSv2 and observed precipitation (PRCP) anomaly during 
1983-2010 at (a)-(d) LM0, (e)-(h) LM1, (i)-(l) LM3 and (m)-(p) LM6 over land grids for four target seasons and four initial months, 

shown on the top of each panel. The numbers are the Southeast Asia mean correlations

from hindcast after lead month-0 followed by month-1 
time. 
	 The prediction skill for PRCP in JJA (Figure 3(c)) 
is greatest (correlation larger than 0.30) over Region 
4-5 (Sabah-Borneo) from hindcast after LM1 and LM6, 
Region 8 (West Papua New Guinea) after LM6, and 
Region 13 (Peninsular Malaysia) after LM0. Region 1 
and 2 (Philippines & Sarawak), Region 10-11 (Java & 
Timor-Leste) and Region 16-20 (Vietnam, Thailand, Laos, 
Cambodia and Burma) has inconsistent low prediction skill 
almost after all lead months but Region 20 (Burma) has 
no skill after LM0-1. Kim et al. (2012) found the summer 
mean precipitation shows an excessive precipitation along 
the Inter-Tropical Convergence Zone (ITCZ), equatorial 
Atlantic, equatorial Indian Ocean and maritime continent. 
Kim et al. (2012) also determined that both systems of SYS4 
and CFSv2 show a dry bias over the East Asia monsoon 
region and northern part of South America. In SYS4, a 

strong dry bias is found over equatorial central Pacific. 
Asian monsoon region, especially the Indian Ocean, has 
low skill in precipitation where the correlation coefficients 
do not exceed the significant confidence level (Kim et al. 
2012). 
	 The skill of precipitation prediction in this season 
often leads to monsoon prediction by the CFS, which is 
mainly a result of ENSO (Yang et al. 2008). Jiang et al. 
(2013) proved that the CFS produces weaker-than-observed 
large-scale monsoon circulation, partially due to the cold 
bias over the Asian continent, and tends to over emphasize 
the relationship between ENSO and the Asian monsoon, as 
well as the impact of ENSO on the Asian and Indo-Pacific 
climate. 
	 Yang et al. (2008) stated that a higher-resolution 
version of the CFSv2 (T126) captures the climatology and 
variability of the Asian monsoon more realistically than 
the current resolution version (T62-CFSv1). The largest 
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FIGURE 3. CFSv2 and observed precipitation (PRCP) anomaly during 1983-2010 at LM0 (dark blue), LM1 
(blue), LM3 (light blue) and LM6 (pale blue) for four target seasons: (a) DJF, (b) MAM, (c) JJA and (d) SON
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improvement occurs in the simulations of precipitation 
near the Tibetan Plateau and over the tropical Indian 
Ocean associated with the zonal dipole model structure 
(Yang et al. 2008). On average, the most skillful prediction 
skill for PRCP is from hindcast after lead month-0 followed 
by lead month-1.
	 Figure 3(d) presents the prediction skill for PRCP in 
SON is greatest (correlation larger than 0.45) over Region 
5-6 (Borneo-Sulawesi) and Region 10-11 (Java & Timor-
Leste) from hindcast after LM0, LM1 and LM3. Region 1-4 
(Philiphines-North Borneo-Sabah-Sarawak) has average 
prediction skill from hindcast after all lead times. Region 
13-14 (Peninsular Malaysia-North Sumatra) almost has 
no skill from hindcast after all lead times. Region 15-17 
(South Thailand, South Cambodia & South Vietnam) has 
inconsistent low prediction skill from hindcast after all 
lead times. The most skillful prediction skill for PRCP in 
this season is from hindcast after lead time of month-0 
followed by month-1 and month-3 for all regions except 
Region 18-20 (North Thailand-Laos-Cambodia-Burma).
	 Overall, the correlation coefficient of the PRCP 
anomaly shows good indication of the actual model skill, 
denoting the CFSv2 modelling system forecast well. 
Forecasts from CFSv2 after LM0 for all target seasons are 
generally skillful compared to other month leads and are 
not very skillful after LM6. Kim et al. (2012) and Peng et 
al. (2011, 2000) proved that prediction skill of the CFSv2 
modelling system for PRCP at LM0 is much greater over 
the tropics than over the extra-tropics, and greater over 
ocean than over land when compared to GPCC. Yang et 
al. (2008) found that CFSv1 captures the onset of the 
monsoon (high precipitation) better than the retreat of 
the monsoon (low precipitation), and it simulates the 
seasonal march of monsoon precipitation over Southeast 
Asia more realistically than over South Asia. However, 
prediction skill for precipitation in CFSv2 for Southeast 

Asia is generally lower than 2 metres temperature (2mT), 
showing greatest skill over the equatorial Pacific due to 
ENSO (Kim et al. 2012). This could perhaps be due to 
forecast error including the error caused by uncertainty 
in the initial state as well as the error caused by model 
imperfection (Peng et al. 2000) existing in CFSv2 
forecasts. Rai and Krishnamurthy (2011) found the growth 
of errors over the land points of India for precipitation in 
CFSv1. Yuan et al. (2011) presented obvious enhancement 
of CFSv2 compared to the previous version of CFSv1 
even with fewer grid cells, significant correlation (>0.4) of 
CFSv2 prediction skill in PRCP after LM1 is demonstrated.
	 Similar with Figure 2, Figure 5 demonstrates 
geographic distributions of the LM0-6 prediction skill 
of CFSv2 in the surface air temperature (SAT) anomaly 
forecast over land grids for DJF, MAM, JJA and SON. 
Overall, CFSv2 has high prediction skill (r = 0.55; Figure 
5(b) & 5(f)) in MAM, especially over Peninsular Malaysia, 
East Malaysia (Sabah and Sarawak), Brunei, Philippines, 
Cambodia, Vietnam, and Sumatra in February (LM0 & 
LM1) (Yuan et al. 2011). The prediction skill at lead 
month-0 is the highest compared to other lead months, 
however, the prediction skill in DJF and SON from hindcast 
after all lead months nearly the same.
	 Similar to precipitation in Figure 3, this study 
also executes the calculation of the product-moment 
correlation coefficients in 20 sub-regions for SAT (Figure 
6). The prediction skill for SAT in DJF (Figure 6(a)) is 
greatest (correlation larger than 0.60) over Regions 3-5 
(Sabah-Sarawak-Borneo) and Region 11 (Java) from 
hindcast after all month lead times. This is comparable 
to the high prediction skill of CFSv2 over Eastern Asia 
and Southern Asia in November (LM0) for DJF, as shown 
by Yuan et al. (2011). Region 7 (East Indonesian) has an 
inconsistently low prediction skill from hindcast after 
all month lead times. Interestingly, prediction skill after 

FIGURE 4. The 20 sub-regions that cover the study area (Ngai et al. 2017)
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all month lead times in this season, is skillful at most 
regions, especially prediction skill after lead month-6. 
Figure 6(b) shows the prediction skill for SAT in MAM is 
greatest (correlation larger than 0.60) over Regions 3-5 
(Sabah-Sarawak-Borneo) and Regions 13-18 (Peninsular 
Malaysia-North Sumatra-South Thailand-Cambodia-
Laos-Vietnam) from hindcast after LM0 and LM1 only. 
Prediction skill for many of the sub-region in MAM is 
slightly worst (correlation below than 0.20) compared 
to other target seasons. Region 1 (East Philippines) and 
Regions 15-19 (Thailand-Cambodia-Laos-Vietnam) have 
the worst prediction skill from hindcast after LM3 and LM6 
lead times. The most skillful prediction for SAT in this 
season is from hindcast after lead month-0 followed by 
lead month-1. Whilst in JJA (Figure 6(c)), the prediction 
skill for SAT is greatest (correlation larger than 0.60) over 
Region 4 (Sabah), Region 13-15 (Peninsular Malaysia-
North Sumatra-South Thailand) and Region 19 (Vietnam) 
from hindcast after LM0, LM1 and LM3. The prediction 
skill for SAT in this season was interestingly skillful after 

LM3 whilst is the worst after LM6, especially in Region 
9 (West-South Papua New Guinea) and Region 17-20 
(Vietnam-Cambodia-Laos-Thailand-South Burma).
	 Lastly, the prediction skill for SAT in SON (Figure 
6(d)) is greatest (correlation larger than 0.60) over 
Region 4 (Sabah) and Region 14 (North Sumatra) from 
hindcast after LM0, LM1 and LM3. Region 6 (Sulawesi) 
has inconsistently low prediction skill from hindcast 
after all lead time of months. The prediction skill for 
SAT in this season after LM6 was interestingly skillful 
compared to LM1, especially in Regions 15-20 (Vietnam-
Cambodia-Laos-Thailand-South Burma). Overall, the 
correlation coefficient of the SAT anomaly shows good 
indication of the actual model as opposed to PRCP. CFSv2 
forecasts SAT better than PRCP to some extent by improved 
representation of physical processes and data assimilation, 
statistical or dynamical downscaling techniques (Yuan et 
al. 2011). Similar to precipitation, forecasts from CFSv2 
after LM0 for all target seasons were reasonably skillful 
compared to other month leads and as predicted, were 

FIGURE 5. The spatial patterns of correlation coefficient between CFSv2 and observed surface air temperature (SAT) anomaly during 
1983-2010 at (a)-(d) LM0, (e)-(h) LM1, (i)-(l) LM3 and (m)-(p) LM6 over land grids for four target seasons and four initial months, 

shown on the top of each panel. The numbers are the Southeast Asia mean correlations
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slightly not skillful after lead month-6 in MAM and JJA. 
Perhaps, due to the predictability errors in CFSv2 and 
this will increase as the forecast lead increases (Drbohlav 
2010).

CONCLUSION

CFSv2 is a second generation coupled ocean-atmosphere-
land model of NCEP that was implemented by an 

FIGURE 6. CFSv2 and observed surface air temperature (SAT) anomaly during 1983-2010 at LM0 (maroon), LM1 
(red), LM3 (light red) and LM6 (pale red) for four target seasons: (a) DJF, (b) MAM, (c) JJA and (d) SON
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initialization of a partially coupled ocean, atmosphere, land 
and sea ice climate reanalysis from 1979, known as CFSR 
(Saha et al. 2010) producing retrospective forecast data 
(hindcast) spanning a period of 28 years from 1983/84 to 
2010/11 (Saha et al. 2014). This newly-coupled dynamical 
model improves seasonal climate forecasts with advanced 
physics, increased resolution and refined initialization. 
Therefore, the purpose of this study was to evaluate 
the prediction skill of CFSv2 for different lead time of 
months in different target seasons by using retrospective 
predictions. Seasonal predictions after month-0, month-1, 
month-3 and month-6 lead times for four target seasons 
(DJF, MAM, JJA and SON) have been investigated with 
16 ensembles for 1983-2011. This study examined the 
seasonal predictive skill of precipitation (PRCP) and 
surface air temperature (SAT) by calculating the correlation 
coefficients between observation (reference data set) and 
the reforecast anomalies (hindcast) for the ensemble mean 
over 28 years. 
	 CFSv2 shows significant correlation in SON for 
precipitation, especially over East Malaysia (Sabah and 
Sarawak), Brunei, Philippines, Cambodia, Vietnam, 
Timor-Leste and East Indonesia in August (LM0). However, 
CFSv2 shows better significant correlation in SAT than 
PRCP especially in MAM over East Malaysia (Sabah and 
Sarawak), Brunei, Philippines, Cambodia, Vietnam, Timor-
Leste and East Indonesia in February (LM0). The prediction 
skill after LM0 is the highest and decreases as the month 
lead-time increases for seasonal forecasting variables, 
precipitation and surface air temperature. However, the 
prediction skill after LM3 (LM6) is the highest in JJA (MAM) 
for precipitation.
	 For better review of CFSv2 prediction skill, this 
study has calculated the product-moment correlation 
coefficients in 20 sub-regions of Southeast Asia for both 
seasonal forecasting variables. The prediction skill for 
precipitation in DJF is low among other seasons after 
any month lead times for most of the sub-region, except 
for Philippines, and high in SON, except for northwest 
of Southeast Asia (North Sumatra, Peninsular Malaysia, 
Thailand, Burma, Cambodia, Laos and Vietnam). As 
studies proved there is systematic biases in CFSv2 
during winter, strong wet biases along SPCZ as well as 
in the Southern Indian Ocean, dry biases over Northern 
Australia and wet biases in East Asia. Nevertheless, the 
prediction skill in JJA was only skillful at equatorial, East 
and South Southeast Asia. Another systematic biases also 
found during winter, dry bias over the East Asia monsoon 
region and wet bias (excessive precipitation) along ITCZ, 
equatorial Atlantic, equatorial Indian Ocean and maritime 
continent. As for MAM, prediction skill for precipitation 
was only skillful after LM0 and LM1.
	 In season DJF, CFSv2 showed better predictive skill 
for SAT at all month lead times than other target seasons 
for over 20 sub-regions, but was slightly low in MAM and 
JJA at LM3 and LM6 based on high mean correlation, r that 
has been calculated (Figure 6(b) & 6(c)). Interestingly, 
the prediction skill in SON was more skillful after LM6 

than LM1 over Thailand, Cambodia, Laos, Vietnam and 
South Burma. In season MAM, CFSv2 prediction skill for 
SAT was only skillful after LM0 and LM1 in most of the 
sub-regions. Yuan et al. (2011) found that CFSv2 reduced 
the bias in surface temperature forecasting for August by 
53% from CFSv1 (Wang et al. 2010), and the reduction 
was much higher over high latitudes in Eurasia. Overall, 
this study has quantified the prediction skill of the most 
recently upgraded seasonal forecast system from NCEP 
that can be considered as reasonable since the mean 
correlation in Southeast Asia calculated show moderate 
values. Yuan et al. (2011) also stated that the CFSv2 does 
show promising features even though it has limited skill 
beyond LM1. The prediction skill of the CFSv2 model 
is much better than CFSv1, especially strong in surface 
temperature predictions (Peng et al. 2013). However, some 
studies suggested that there is a critical issue in evaluating 
the choice of the reference (observation) dataset used for 
model prediction skill assessment. Perhaps, future study 
should examine the sensitivity of the prediction skill by 
using station data observation rather than station gridded 
data, and divide the data spanning years into two periods 
(1983-1999 and 2000-2011) (Peng et al. 2011). 
	 In spite of this, for further study must quantify the 
systematic bias of CFSv2 and the increase of predictability 
errors over Southeast Asia by using reference data set 
in this study as well as quantifying the probabilistic 
quantities of prediction skills.	
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