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ABSTRACT

In order to determine the favourable oceanographic conditions which influence fish aggregation areas, the integration 
of remote sensing and GIS technique was applied. This paper aims to classify the spatial distribution and abundance 
of R. kanagurta in the South China Seas (SCS) using principal component analysis (PCA) and cluster analysis (CA). 
Remotely-sensed satellite oceanographic data of chlorophyll-a concentration (chl-a), sea surface temperature (SST) 
and sea surface height (SSH) together with high catch fish data were used to characterize seasonal abundance of the 
R. kanagurta. PCA identified two principal components that had eigenvalues >1 (PC1 and PC2) which accounted for 
59.3% of the cumulative variance. Factor loading in the PCA proved that all environmental variables used in this study; 
chl-a (PC1), SSH and SST (PC2) had influenced the CPUE of R. kanagurta. Using CA, two clusters of CPUE abundance 
were identified. In cluster 1, an average CPUE of 350.7 kg/m³ with highest catch were recorded in January, April, May, 
July and October. Meanwhile, in cluster 2, an average CPUE of 1033.9 kg/m³ with highest catch were recorded in 
April, May, September and October. Preferred range for fish aggregations showed SST, SSH and chl-a were observed in 
between 29-31°C, 1.12-1.28 m and 0.24-0.42 mg/m3, respectively. Binary habitat suitability index was used to model 
the potential aggregation areas. The highest potential fish aggregations areas of R. kanagurta were found located along 
the coast of Peninsular Malaysia in early and late Southwest monsoon (at accuracy of 83.68% with kappa of 0.7).
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ABSTRAK

Integrasi antara data penderiaan jauh dan teknik GIS diaplikasi bagi menentukan keadaan oseanografi yang mempengaruhi 
kawasan pengumpulan ikan. Objektif dalam kajian ini adalah untuk mengelaskan  taburan reruang dan kelimpahan 
R. kanagurta di Laut China Selatan menggunakan analisis komponen prinsipal (PCA) dan analisis kelompok (CA) serta 
mengenal pasti perhubungan antara taburan ikan dengan keadaan persekitaran. Hubungan antara data taburan klorofil-a 
(chl-a), suhu permukaan laut (SST) dan  ketinggian permukaan laut (SSH) daripada satelit penderiaan jauh serta taburan 
tangkapan R. kanagurta digunakan untuk mengenal pasti hubungan taburan musiman ikan pelagik. PCA mengenal pasti 
dua komponen prinsipal yang mempunyai nilai eigen >1 (PC1 dan PC2) dengan nilai peratus kumulatif varians adalah 
59.3%. Faktor penentuan dalam komponen prinsipal menunjukkan bahawa parameter persekitaran mempengaruhi 
data tangkapan ikan. CA menunjukkan dua kelompok tangkapan ikan dengan kelompok 1, nilai purata tangkapan ikan 
sebanyak 350.7 kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan Januari, April, Mei, Julai, September dan 
Oktober. Manakala, di dalam kelompok 2, nilai purata tangkapan ikan sebanyak 1033.9 kg/m³ dengan catatan tangkapan 
ikan tertinggi pada bulan April, Mei, September dan Oktober. Julat kesesusaian cerapan pengumpulan ikan bagi SST, 
SSH dan chl-a didapati pada suhu 29-31°C, 1.12-1.28 m dan 0.24-0.42 mg/m³. Kawasan berpotensi bagi pengumpulan R. 
kanagurta yang dimodel menggunakan indeks kesesuaian habitat mendapati kawasan pengumpulan R. kanagurta paling 
berpotensi terletak di sepanjang perairan pantai Semenanjung Malaysia pada permulaan dan akhir musim monsun barat 
daya (pada ketepatan 83.68% dengan nilai kappa 0.7). 

Kata kunci: Kawasan pengumpulan ikan;  ketinggian permukaan laut; klorofil-a; Rastrelliger kanagurta; suhu permukaan 
laut  

INTRODUCTION

The Indian mackerel (Rastrelliger kanagurta) is an 
epipelagic scombrid that is widespread across the north-
west and east of Peninsular Malaysia, Sabah and Sarawak 
(Mansor 1989). It is one of the most commercially 
important small pelagic fishery resources (Mansor et al. 
1996). This species are fast-swimmers and schools in 

large aggregations (Collette & Russo 1984), migrates 
seasonally and geographically in relation to the annual 
cycles of ocean productivity, reproductive cycles, ocean 
currents and circulation (Skjoldal 2004). Due to the 
complexity of the spatial structure of distribution of this 
pelagic species, it is difficult for fishermen to determine its 
fishing grounds. However, this species tends to aggregate 
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in relation to their physical and biological indicators of 
the ocean environment. According to Solanki et al. (2005) 
physical processes in the upper ocean influence biological 
processes and ultimately determine the distribution of 
pelagic fish. Thus, it is possible to describe and understand 
the relationship between oceanographic conditions and 
biological interaction which affects and influences the 
dynamics of pelagic stocks (Shaari & Mustapha 2018).
	 Previous studies have shown that the distribution and 
abundance of the Indian mackerel is greatly influenced by 
oceanographic conditions such as sea surface temperature 
(SST) and chlorophyll-a concentration (chl-a). SST is one 
of the most common oceanographic variables in indicating 
the changes and variability of the monsoon (Nurdin et al. 
2017a) and it is widely used in combination with chl-a 
to explain fish distribution and abundance (Chassot et al. 
2011). Meanwhile, sea surface height (SSH) measurements 
which also influence fish aggregation provide insights into 
ocean current movement (Zagaglia et al. 2004). Hence, 
it is predicted that these oceanographic conditions may 
influence the abundance and distribution of the Indian 
mackerel.
	 Generation of high spatial and temporal remote 
sensing data integrated with geographical information 
system (GIS) has made it possible for oceanographic 
parameters observation. GIS also extensively used in marine 
fisheries studies especially in determination of relationship 
between fish population dynamics and environmental 
factors (Nishida et al. 1999; Pena et al. 1999; Zheng et al. 
2001). Thus, integration of satellite data, GIS and statistical 
analysis, combined with in-situ observations related to 
fisheries abundance are most effective ways to manage 
fisheries at sustainable levels (Wilson 2011). This paper 
aims to classify the spatial distribution and abundance of 
the Indian mackerel in the South China Seas (SCS) using 
principal component analysis (PCA) and cluster analysis 
(CA) and to identify relationship of distribution with local 
environmental conditions. 

MATERIALS AND METHODS

STUDY AREA

This study analysed the R.kanagurta catches using purse 
seine conducted by Southeast Asian Fisheries Development 
Center (SEAFDEC) at the east coast of Peninsular Malaysia’s 
Exclusive Economic Zone (EEZ) (Figure 1). The area of the 
east coast of Peninsular Malaysia (EEZ) is about 130,000 
km² which covers from 1°14.047’ to 7°48.92’N and 
102°5.03’ to 105°48.77’E (Mohsin & Mohamed 1988). The 
climate in the area is controlled by the SCS monsoon due 
to its location at the tropical marginal sea of the Southeast 
Asia (Fang & Fang 1998). The monsoon systems in SCS are 
influenced by two main monsoons, namely the Southwest 
Monsoon (SWM) from May to August and Northeast 
Monsoon (NEM) from November to February (Suhaila & 
Jemain 2009). There are also two inter-monsoon transitions 
in between the monsoon systems; inter-monsoon transition 

from March to April and inter-monsoon transition from 
September to October (MMD 2016; Yahaya et al. 2016). 

FIGURE 1. The Exclusive Economic Zone (EEZ) area of east 
coast of Peninsular Malaysia in the South China Sea where 

fishing of R. kanagurta are conducted

FISHERIES DATA

The Indian mackerel fisheries data from 2008 until 2010 
were used in this study. The data consisted of total 4281 
fishing locations with total catch per unit effort (kg/m³). 
Based on previous studies (Andrade & Garcia 1999; 
Zainuddin et al. 2008) in order to discern catch data, 
we separated the fishery data into three categories: Null 
catches, positive catches and high catches. The value of 
CPUEs greater than 127 kg/m³ represented the lower limit 
of the upper quartile of CPUEs greater than zero. We divided 
the CPUE data into: cases with CPUE equal to zero - ‘null 
catches’; cases with CPUE greater than zero but lower than 
127 kg/m³ - ‘positive catches’; and cases with CPUE greater 
than 127 kg/m³ - ‘high catches’. In this study only the ‘high 
catches’ data were used. A total of 158 ‘high catches’ data 
were analysed.

ENVIRONMENTAL DATA

Remotely-sensed environmental data of chl-a, SST & 
SSH were used in this study. Daily MODIS level 1 SST 
and chl-a dataset from the Ocean Color website at 1 
km² spatial resolution were downloaded from 2008 until 
2010. Data were processed using SeaWiFS Data Analysis 
System (SeaDAS) version 6.1 software. Generated Level 
3 product was subset from the images to the study area at 
geographical extent of 1° to 8°N and 102° to 106°E using 
ERDAS Imagine version 10.0 software. The absolute daily 
SSH data were obtained from Archiving, Validation and 
Interpretation of Satellite Oceanographic Data (AVISO) 
which was downloaded from NOAA CoastWatch at 0.25 
degrees spatial resolution in both longitude and latitude. 
Due to the different spatial resolutions, interpolation is 
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applied for the enhancement of the SSH spatial resolution 
using GIS tools. Daily values of chl-a, SST and SSH were 
extracted from each pixel corresponding to the location 
of fishing activities using spatial analyst of ArcGIS 10.0.

DATA ANALYSIS

PCA is one of several statistical tools that are available 
to reduce the dimensionality of a data set. PCA was 
conducted to represent the patterns encoding the highest 
variance in the fish catch data set. To run the PCA a matrix 
of correlations of fishery CPUE as dependent variables 
and environmental variables studied (chl-a, SST and SSH) 
as independent variables was constructed. A principal 
component is a normalized linear combination of the 
original predictors in a data set. The principal component 
can be written as: 

	 Z¹ = Φ¹¹X¹ + Φ²¹X² + Φ³¹X³ + .... + Φ ¹Xp 	 (1)

where Z¹ is first principal component; Φ ¹ is the loading 
vector comprising of loadings (Φ¹, Φ²..) of first principal 
component. The loadings are constrained to a sum of square 
equals to 1. This is because large magnitude of loadings 
may lead to large variance. It also defines the direction of 
the principal component (Z¹) along which data varies the 
most. It results in a line in p dimensional space which is 
closest to the n observations. Closeness is measured using 
average squared euclidean distance. Meanwhile, X¹…X 
are normalized predictors. Normalized predictors have 
mean equals to zero and standard deviation equals to one. 
Kaiser-Guttman (Guttman 1954) and broken-stick criterion 
(Frontier 1976; Legendre & Legendre 1998) were applied 
as stopping rules for determining the number of principal 
component. These rules are based on average test statistic 
values. Eigenvalues or eigenvectors that is larger than the 
average value expected under the null is used to assess the 
relative interpretability of the ordination results. PCA that 
has eigenvalues more than 1 is considered to represent 
significant assemblages (Jackson 1993; Jolliffe 1986). 
	 Meanwhile, CA was used to classify the object into 
homogenous groups. CA of CPUE ‘high catches’ data were 
determined using hierarchical clustering. A hierarchical 
clustering algorithm represented below can be used to 
generate a partition by minimizing the sum of squared 
errors;
 								      

	 	 (2)
	

where (x1, · · · , xn) = X is the data matrix and mk =Ʃi∈Ck 
xi/nk is the centroid of cluster Ck and nk is the number of 
points in Ck (Bradley & Fayyad 1998; Grim et al. 1998; 
Moore 1998). Analyses of PCA and CA were conducted 
using R software (V3.5). 
	 Relationship between the environmental parameters 
and CPUE was determined using frequency analysis (FA). 
FA was used to determine preferred ranges of the variables 
from the frequency distribution. Binary habitat suitability 

model was then constructed using the R. kanagurta 
preferred ranges in GIS to identify species aggregation 
areas. Accuracy assessment was conducted on the predicted 
aggregation area was carried out using Kappa Statistics. 
Kappa statistics characterized the degree of matching 
between reference data set and classification. It was 
conducted on the predicted aggregation areas and validated 
using independent catch data (Vasconcelos et al. 2013). 

RESULTS 

Based on Kaiser-Guttman and broken stick model 
criterion, when using correlation matrices, population 
components having eigenvalues more than 1 summarize 
shared variation and should be retained. In this study, PCA 
identified the first two principal components of having 
eigenvalues more than 1 (PC1 & PC2) which explained 
59.3% of the cumulative variation. PC1 and PC2 accounted 
variability of 33.3% and 26%, respectively (Table 1).

TABLE 1. Eigenvalues, percentage of variance and 
cumulative variance of each principal component in terms                            

of average CPUE data

Principal 
component

Eigenvalue Variance 
(%)

Cumulative 
variance (%)

PC1
PC2
PC3
PC4

1.15
1.02
0.93
0.84

33.3
26.0
23.3
17.4

33.3
59.3
82.6
100.0

	 The highest factor loading value determines which 
environmental variables influence the principal component 
the most. Factor loadings of the four variables in the first 
two components of the PCA indicated that the first principal 
component had large associations with chl-a. Meanwhile, 
the second component indicated large associations with 
SSH and SST (Table 2).

TABLE 2. Loadings of the first two principal components 
(PC1 and PC2) on the average of CPUE data in relation to its 

oceanographic variables

Variable PC1 PC2
Chl-a
SST
SSH

CPUE

 -0.63*
-0.46
-0.44
-0.44

-0.02
 0.69*
 -0.72*

0.02
(*) represent highest values of factor loading that influences the principal component 
the most

	 CA of the first two principal components defined two 
cluster of CPUE abundance. Cluster 1 indicated average CPUE 
of 350.7 kg/m³; meanwhile, cluster 2 indicated average 
CPUE of 1033.9 kg/m³. For cluster 1, highest CPUE catch 
above average of 350.7 kg/m3 were recorded in January, 
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April, May, July and October. Meanwhile for cluster 2, 
highest CPUE catch above average of 1033.9 kg/m3 were 
recorded in April, May, September and October (Figure 2). 
	 PCA indicated that the environmental variables used 
in this study influenced the CPUE. CA indicated variability 
in seasonal patterns of fish abundance which showed that 
variability in oceanographic conditions influenced fish 
aggregations. From the CA results, the highest CPUE value 
occurred in early SWM and late SWM. 
	 R. kanagurta potential aggregation areas were 
constructed using FA according to the oceanographic 
parameters preferred ranges of SST, SSH and chl-a. Based 
on the FA result, high catch of R. kanagurta occurred at 
chl-a range of 0.24 - 0.42 mg/m3, SST range of 29 - 30°C 
and SSH range of 1.12-1.28 m. Figure 3 indicates that, 
most suitable potential of R. kanagurta aggregation areas 
in (a) May and (b) October were more distributed along 
the coast of Peninsular Malaysia. In comparison during 
(c) November and (d) February, which the potential fish 
aggregation areas were less distributed. The prediction 
map of R. kanagurta aggregation areas around the study 
area indicated accuracy at 83.68% with kappa of 0.7. 

DISCUSSION

OCEANOGRAPHIC PARAMETERS AND                           
SEASONAL VARIABILITY 

The PCA result indicated that all oceanographic parameters 
(SST, SSH and chl-a) used in this study influenced fish 
aggregations. It is well reported that SST is one of the 
most important oceanographic parameter in indicating 
the changes and variability of the monsoon and vital 
variable for detecting aggregation areas of Indian mackerel 
which are sensitive to the changes of temperature (Shaari 
& Mustapha 2018). Meanwhile, chl-a is known as an 
indicator of fish aggregation related to feeding habitat 
(Lanz et al. 2009). Areas of relatively stable temperature 
and high chlorophyll concentrations may attract feeding of 

pelagic species. SSHA is related to the changes in the depth 
of the thermocline and mesoscale variability (Polovina & 
Howell 2005; Wyrtki 1961). According to Anon (1976), 
mackerel have a tendency to remain in the mixed layer, 
just above the thermocline where food availability is good.
	 The SCS is subjected to the seasonal monsoon seasons 
which affect the oceanographic conditions (MMD 2016). 
This variability thus influences the productivity of the 
fishing grounds. The oceanographic parameters such as 
chl-a, SST, currents and winds are the main processes 
that affect and influence the dynamics of pelagic fish 
distribution and abundance (Nurdin et al. 2014). In this 
study, CA showed that R. kanagurta high catch occurred in 
the early and late SWM. Occurrence of certain oceanographic 
processes is known to influence the productivity of an area. 
Processes of stratification and mixing during monsoons 
period is mainly influenced by sea surface wind, heat flux, 
river charges and density-driven and wind-driven currents 
(Akhir 2014).
	 The distribution of R. kanagurta from the suitability 
index was observed in the range of chl-a, SST and SSH were 
between 0.24 - 0.42 mg/m3, 29 - 31°C and 1.12-1.28 m, 
respectively. This was similar to the results of the study 
from Nurdin et al. (2017b) in the archipelagic waters of 
Spermonde, Indonesia where it was found that the highest 
fishing frequency of R. kanagurta was at chl-a range of 
0.24 - 0.30 mg/m3 and SST range of 29.6 - 30.2°C. Based on 
Figure 2, cluster 1 showed that R. kanagurta catches were 
fairly high throughout the year (>127 kg/m3) but highest 
catch was recorded in cluster 2 which were in April, May, 
September and October. 
	 During the beginning of SWM, warmer surface area 
and weak surface wind contributes to development of 
stratification (Yanagi et al. 2001). Due to stratification, 
areas of relatively stable temperature and high chlorophyll-a 
may attract feeding pelagic species (Chandran et al. 2009). 
Water stratification creates barrier of nutrient mixing 
between layers influencing the primary production for fish 
aggregation areas (Xian et al. 2012). 

FIGURE 2. Average CPUE per month for cluster 1 with highest catch recorded in January, 
April, May, July, September and October. Average CPUE per month for cluster 2 with 

highest catch recorded in April, May, September and October
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	 Meanwhile, in late SWM, wind change and rain starts 
to occur. This generates mixing in the surface layer where 
occurrence of coastal upwelling supports phytoplankton 
growth (Susanto et al. 2006). Akhir et al. (2015) showed 
that occurrence of large coastal upwelling system along 
the coast during this season. The water is characterized by 
colder temperature, higher salinity and is rich in nutrient 
(Gambang et al. 2003). According to Shaari and Mustapha 
(2017), chl-a concentration and distribution were related 
to availability of nutrients influenced by rainfall. These 
nutrients will fertilize the surface water which leads to 
high biological productivity. Good fishing grounds are 
typically found in these areas which have higher primary 
productivity and supports favorable fishing grounds 
(Zainuddin 2007). 

FISH SPECIES AGGREGATION AREAS

The simple prediction map showed the most potential fish 
aggregation area during early and late SWM was detected 
along the coastal areas (Figure 3). It was observed that the 
predicted area was more distributed in May and October. 
Meanwhile, predicted maps represented by November 

and February which had lesser catch indicated smaller 
potential areas. This is due to lesser distribution of 
favorable environment for fish aggregation areas. Study by 
Shaari and Mustapha (2018) indicated highest catch of R. 
kanagurta was during October. Meanwhile, Gambang et 
al. (2003) also found small pelagic fishes of R. kanagurta 
closed to the shore and islands especially during the calm 
season (May - October).
	 The areas with high potential aggregation area were 
found along the coastal area and offshore of the EEZ with 
the range of chl-a of 0.32 - 0.37 mg/m3, SST of 30.3 - 30.7°C 
and SSH of 1.13 - 1.17 m in April and May. Meanwhile, 
chl-a of 0.31 - 0.32 mg/m3, SST of 29.1 - 29.7 and SSH of 
0.98 - 1.2 m in September and October (Table 3). Study 
by Yusop and Mustapha (2019) also showed the similar 
ranges. It also stated that chl-a influenced R. kanagurta 
potential fishing ground during northeast and intermediate 
monsoon of October. Meanwhile, SST was found to 
influence the potential fishing grounds during southwest 
and intermediate monsoon period of April. 
	 Chl-a concentration is known as a very important 
oceanographic parameter in determining the productivity 
ocean upwelling (Xie et al. 2003). Rich nutrients often 

FIGURE 3. The environmental parameter (SST, SSH and chl-a) used to determined aggregation areas of R. kanagurta on 
(a) 16-23rd May 2008, (b) 7-14th October 2009, (c) 1-7th November 2008 and (d) 10-17th February 2010. Red areas indicated the 

most suitable aggregation areas according to the preferred ranges of environmental conditions for R. kanagurta. 
Meanwhile, the white areas indicated the less suitable area for fish aggregations

TABLE 3. High CPUE catches of Indian mackerel in relation to oceanographic conditions in the EEZ of 
Peninsular Malaysia during April-May and Sept-October

Oceanographic parameters April -May Sept -Oct
Chl-a (mg/m3)

SST (°C)
SSH (m)

0.32-0.37
30.3-30.7
1.13-1.17

0.31-0.32
29.1-29.7
0.98-1.2
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indicate an active biological activity which is mainly 
associated with the abundance and migratory patterns of 
the pelagic species (Solanki et al. 2001). Meanwhile, SST is 
assumed to be an index of the physical environment, which 
influences phytoplankton growth (Tang & Kawamura 2002) 
and controls the physiology of the living organisms such as 
spawning, aggregating and migrating period (Laevastu & 
Hayes 1981). SSH is a proxy to determine the distribution of 
the fish species because of its relationship with geostrophic 
current. SSH is also related to the changes in the depth 
of the thermocline and mesoscale variability which can 
directly or indirectly impact the fishing grounds (Polovina 
& Howell 2005; Rebert et al. 1985). Combination of these 
oceanographic parameters provides favorable environment 
for aggregation of the Indian mackerel.

CONCLUSION

PCA result showed that the environmental variables 
influenced the CPUE of R. kanagurta. Meanwhile, CA 
indicated variability in seasonal patterns of fish abundance 
which showed that variability in oceanographic conditions 
influenced fish aggregation areas. High distribution of R. 
kanagurta was related to chl-a of 0.24 - 0.42 mg/m3, SST 
of 29 - 31°C and SSH of 1.12 - 1.28 m. This study showed 
that variability in oceanographic conditions influenced 
aggregation areas of R. kanagurta spatially and temporally. 
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