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 Fifth Order Multistep Block Method for Solving Volterra 
Integro-Differential Equations of Second Kind
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Persamaan Pembezaan - Kamiran Volterra Jenis Kedua)
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ABSTRACT

In the present paper, the multistep block method is proposed to solve the linear and non-linear Volterra integro-differential 
equations (VIDEs) of the second kind using constant step size. The proposed block method of order five consists of two 
point block method presented as in the simple form of Adams Moulton type. The numerical solutions are obtained at 
two new values simultaneously at each of the integration step. In VIDEs, the unknown function appears in the form of 
derivative and under the integral sign. The approximation of the integral part is estimated using the Boole’s quadrature 
rule. The stability region is shown, and the numerical results are presented to illustrate the performance of the proposed 
method in terms of accuracy, total function calls and execution times compared to the existing method. 
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ABSTRAK

Dalam makalah ini, kaedah blok berbilanglangkah dicadangkan bagi menyelesaikan persamaan pembezaan-kamiran 
Volterra (PPKV) linear dan tak linear daripada jenis kedua menggunakan saiz langkah yang malar. Kaedah blok peringkat 
lima yang dicadangkan terdiri daripada dua titik blok yang dibentangkan dalam bentuk yang mudah daripada jenis 
Adams Moulton. Penyelesaian berangka diperoleh dalam dua nilai baru pada masa yang sama di setiap langkah 
kamiran. Dalam PPKV, fungsi yang tidak diketahui muncul dalam bentuk terbitan dan tanda kamiran. Penghampiran 
bahagian kamiran dianggarkan dengan menggunakan peraturan kuadratur Boole. Rantau kestabilan ditunjukkan dan 
keputusan berangka dibentangkan untuk menggambarkan prestasi kaedah yang dicadangkan daripada segi kejituan, 
jumlah panggilan fungsi dan masa pelaksanaan berbanding kaedah sedia ada.

Kata kunci: Aturan kuadratur; kaedah blok; persamaan pembezaan-kamiran Volterra 

INTRODUCTION

VIDEs appeared in many physical applications such as in 
glass forming process, nano hydrodynamics, heat transfer, 
diffusion process in general and neutron diffusion. The 
following initial value problems for general Volterra 
integro-differential equations (VIDEs) will be considered:

 
	 y'(x) = F(x, y(x), z(x)),  y(0) = y0,  0 ≤ x ≤ a	 (1)

	
	 	 (2)

	 Many different methods have been used to solve the 
VIDEs problems such as in Chang (1982), Day (1967), 
Dehghan and Salehi (2012), Filiz (2013, 2014), Ishak and 
Ahmad (2016); Kürkçü et al. (2017) and Linz (1969). The 
used of numerical quadrature rules for solving VIDEs has 
been first discussed by Day (1967). He solved the VIDEs 
by using the composite trapezoidal rule. Then, Linz (1969) 
has introduced the combination of linear multistep method 
and numerical quadrature rules for solving the differential 

part and integral part of VIDEs. The convergence of such 
methods has been studied by Linz (1969) and Mocarsky 
(1971). Chang (1982) has studied the linear multistep 
method by using two-step and three-step Adams-Moulton 
method with Euler-Maclaurin for solving VIDEs. Later, 
Makroglou (1982) has implemented the theory and stability 
of the hybrid method for the solution of VIDEs. Mohamed 
and Majid (2016) have introduced multistep block method 
for solving Volterra integro-differential equation. Recently, 
Kürkçü et al. (2017) have proposed the collocation method 
based on residual error analysis for solving integro-
differential equations. 
	 An earlier work of one-step algorithms for the 
numerical solution of VIDEs has been done by Feldstein 
and Sopka (1974). Then, Runge-Kutta theory for solving 
VIDEs problem together with its global convergence has 
been ingeniously studied by Lubich (1982). Yuan and Tang 
(1990) proposed implicit Runge-Kutta method for solving 
the nonlinear integro differential equation. In Filiz (2014, 
2013), both articles have solved VIDEs using Runge-Kutta 
method and paired it with Newton Cotes quadrature rule. 
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	 In this paper, we present the fifth order multistep block 
method derived in Majid and Suleiman (2011) with the 
Boole’s quadrature rule for solving linear and nonlinear 
(1) and (2) of second kind using constant step size.

MATERIALS AND METHODS

The two point three-step block method has been derived 
earlier by Majid and Suleiman (2011). The derived method 
based on predictor-corrector pair is used to solve for first 
order ordinary differential equations (ODEs). The set of 
points {xn–3, xn–2, xn–1, xn} are used to derive the predictor 
formulas while the set of points are involved in deriving 
the corrector formulas. The method is derived using the 
Lagrange interpolating polynomial. 

	 Then, substitute  in (3) and (4), changing the 

limit of integration and replace dx = hds, hence the desired 
predictor and corrector formulas are obtained as follows:

Predictor formula:

	 	 (5) 

Corrector formula:

	

	 	 (6)

	

	 The order of the method in (5) and (6) are determined 
by applying Definition in Lambert (1973): The difference 

operator L defined by L[y(x); h] =  [αj y(x + jh] – hβj y' 

and associated with the linear multistep method (LMM)

αjyn+j = h  βj fn+j where αj and βj are constant. The LMM 

are said to be of order q if C0 = C1 = … Cq = 0 and Cq+1 ≠ 0. 
The formula for the constant, Cq defined as,

	 	 (7) 

	

	 The predictor formula (5) is implement in (7) and since  
C0 = C1 = C2 = C3 = C4 = 0 and C5 ≠ 0, hence the method 
is of order four and the error constant is, 

FIGURE 1.Two point three-step block method

	 In Figure 1, the two point of yn+1 and yn+2 are obtained 
by integrating y' = f (x, y) over the interval [xn, xn+1] and 
[xn, xn+2]. The predictor formula of the two point three-step 
block method are derived using Lagrange interpolation 
polynomial of order four as (3) while the corrector formula 
of the two point three-step block method are derived using 
Lagrange interpolation polynomial of order five as (4):

	
	

	 (3)

	

	 (4)
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	 	 (8)

	 Next, the order of the method in (6) is determined by 
applying the same formula as in (7). The corrector formula 
of the two point three-step block method is order five and 
the error constant is,

	 	 (9)

	 The multistep block method for solving linear and 
nonlinear VIDEs has been written in C language and 
implemented in the Microsoft Visual C++ environment. 
The implementation involved the two point three-step 
block method of order five with Boole’s rule for the 
problems when K(x, s) = 1 in (2). The formula for Boole’s 
rule is given as, 

	 (10)

	 The composite Boole’s rule with interpolation scheme 
is adapted for solving (1) when K(x, s) ≠ 1 in (2). Consider 
the interval [a. b]  is subdivided into 4m subintervals of 
equal width . Hence, 

	

Using composite Boole’s rule, for n = 0, 4, 8, … . 

	 	 (11)

	

	 (12)

	 Lagrange interpolation at points {xn+1, xn+2, xn+3, 
xn+4, xn+5} is used to calculate for unknown values 

. The following formulas have been 

derived:

	

	
	

	 (13)

	

	

	

	 (14)

	 The unknown values  are found by 

using formula in (13). Lagrange interpolation at points  
{xn+2, xn+3, xn+4, xn+5, xn+6} is used to calculate for unknown 

values . The following formulas have been 

derived:
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	 	 (15)

	

		

	

	

	

	

	 (16)

	 The unknown values   

are found by using formula in (13) and (15). Lagrange 
interpolation at points {xn+3, xn+4, xn+5, xn+6, xn+7} is used 
to calculate for unknown values . The 

following formulas are obtained:

	 	

	 	 (17)

	 	
	

	 The stability of the proposed two point three- 
step block method together with the Boole’s rule are 
investigated. The following linear test equation for the 
stability is given:

	 	 (18)

	 The solutions of (18) tend to zero as x → ∞ if and only 
if ξ < 0 and η < 0. Then, the region of absolute stability is 
the set of points (hξ, h2 η) for which all zeros of the stability 
polynomial,

	 	 (19)

lie in the interior of the unit disk. From (19), the correspond 
unique polynomials ρ, σ,  and  are given as
I.	 First point of corrector formula

	 ρ(r) = r3 – r2    

	
(20)

II.	 Second point of corrector formula

	 ρ(r) = r4 – r2     

	 (21)

III.	 Boole’s rule

	     	

(22)

	 Then, substitute (20), (21) and (22) into the formula 
of the stability polynomial as in (19). From the stability 
polynomial, the region of absolute stability of the 
combinations method is plotted. From Figure 2, the method 
is stable within the shaded region.

NUMERICAL RESULTS

We have tested five numerical problems that consist of 
linear and non-linear VIDEs and it involve K(x, s) = 1 and  
K(x, s) ≠ 1.  The results obtained were given in Tables 1 to 
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5 in terms of maximum error, total steps, total function calls 
and timing. The notations used in the table are as follows:

MAXE	 :	 Maximum error
h	 :	 Step size
TS	 :	 Total steps
TFC	 :	 Total functions call
Time	 :	 Execution time in seconds
 -	 :	 Not discuss by the author of the method
2P3BVIDE	 :	 Two point three-step block method as in 

this research
GBDF-5	 :	 Combination of boundary value methods 

and fifth order generalized backward 
differentiation formula by Chen and Zhang 
(2011)

ABM5	 :	 Fifth order Adams-Bashforth-Moulton 
predictor-corrector method in Faires and 
Burden (2005)

Problem 1 (K(x, s) = 1) Linear VIDEs:

	       y(0) = 1    0 ≤ x ≤ 1

Exact solution: y(x) = cos x.

Problem 2 (K(x, s) = 1) Linear VIDEs:

	      y(0) = 0   0 ≤ x ≤ 1

Exact solution: y(x) = sin x.

Problem 3 (K(x, s) ≠ 1) Linear VIDEs:

	   

	 y(0) = 1      0 ≤ x ≤ 5

Exact solution: y(x) = e-x.

Problem 4 (K(x, s) ≠ 1) Nonlinear VIDEs:

	

	 y(0) = 1     0 ≤ x ≤ 4

Exact solution: .

Problem 5 (K(x, s) ≠ 1) Nonlinear VIDEs:

	

	 y(0) = 0        0 ≤ x ≤ 2

Exact solution: y(x) = x2.

DISCUSSION AND CONCLUSION

In this section, the performance of the proposed multistep 
block method with quadrature rule in terms accuracy, total 
function calls and execution times for solving the five 
numerical problems is presented. It is important to mention 
that the comparison is being made with ABM5 which has 
been run in the same environment as the 2P3BVIDE.
	 Tables 1 and 2 display the numerical results for the 
linear VIDEs problem when K(x, s) = 1 and it shown that 
the maximum error of the 2P3BVIDE is one or two decimal 
places better in terms of accuracy compared to ABM5. Table 
3 represents the results for the linear VIDEs when K(x, s) ≠ 1 
and we could observe that the GBDF-5 outperformed 
the 2P3BVIDE by obtaining smaller maximum error at 
smaller h but the 2P3BVIDE manage to give more accurate 
approximation at larger step sizes. The accuracies are 
comparable between ABM5 and 2P3BVIDE. In terms of total 
steps, total function calls and timing, we could observed 
that the 2P3BVIDE is less costly compared to ABM5. 
	 The nonlinear problems of VIDEs when K(x, s) ≠ 1 are 
solved and the numerical results are shown in Tables 4 and 
5. We could observe that the maximum error is comparable 
between ABM5 and 2P3BVIDE. The results also showed 
that the 2P3BVIDE manage to obtain less total number of 
steps and function call compared to ABM5. The proposed 
2P3BVIDE was represented in a block manner and it is able 
to approximate the solutions at two points simultaneously. 
Therefore, the proposed multistep block method managed 
to achieve the execution time faster than the existing 
method and yet manage to produce better accuracy. 

FIGURE 2. Stability region in the hξ, h2η plane
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TABLE 1. Numerical results for Problem 1

h Method MAXE TS TFC Time
ABM5

2P3BVIDE
2.8951e-007
5.7323e-008

40
22

88
50

0.0940
0.0574

ABM5
2P3BVIDE

3.6127e-008
3.5893e-009

80
42

168
90

0.1783
0.1254

ABM5
2P3BVIDE

4.3953e-009
2.2443e-010

160
82

328
170

0.2370
0.1926

ABM5
2P3BVIDE

5.4213e-010
1.3908e-011

320
162

648
330

0.3525
0.3277

ABM5
2P3BVIDE

6.7325e-011
8.6930e-013

640
640

1288
650

0.5971
0.5000

ABM5
2P3BVIDE

8.3668e-012
5.4179e-014

1280
642

2568
1290

1.0786
1.0293

TABLE 2. Numerical results for Problem 2

h Method MAXE TS TFC Time
ABM5

2P3BVIDE
4.4529e-009
1.2349e-009

40
22

88
50

0.1020
0.0700

ABM5
2P3BVIDE

2.3862e-010
3.8642e-011

80
42

168
90

0.1579
0.1166

ABM5
2P3BVIDE

1.4271e-011
1.2080e-012

160
82

328
170

0.2622
0.2034

ABM5
2P3BVIDE

8.6009e-013
3.7751e-014

320
162

648
330

0.4222
0.3124

ABM5
2P3BVIDE

4.7296e-014
5.3291e-015

640
322

1288
650

0.6262
0.5000

ABM5
2P3BVIDE

1.6764e-014
1.3545e-014

1280
642

2568
1290

1.1360
0.9598

TABLE 3. Numerical results for Problem 3
h Method MAXE TS TFC Time

GBDF-5
ABM5

2P3BVIDE

2.3922e-002
8.1337e-003
6.1138e-003

-
20
11

-
85
59

-
0.0715
0.0462

GBDF-5
ABM5

2P3BVIDE

3.1790e-004
4.7616e-004
3.9009e-004

0
40
21

-
165
99

-
0.1623
0.0900

GBDF-5
ABM5

2P3BVIDE

4.3708e-006
2.1034e-005
1.6881e-005

0
80
41

-
325
179

-
0.2139
0.1930

GBDF-5
ABM5

2P3BVIDE

7.5567e-008
7.8509e-007
6.1208e-007

-
160
81

-
645
339

-
0.3278
0.2494

GBDF-5
ABM5

2P3BVIDE

-
2.6828e-008
2.0516e-008

-
320
161

-
1285
659

-
0.5850
0.4239

GBDF-5
ABM5

2P3BVIDE

-
8.7684e-010
6.6334e-010 

-
640
321

-
2565
1299

-
1.1659
0.7499
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	 In conclusion, the proposed multistep block method 
based on the two point three-step block method with the 
quadrature Boole’s rule is suitable for solving the second 
kind VIDEs.
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