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ABSTRACT

This paper presents the identification of outliers in multiple circular regression model (MCRM), where the model studies 
the relationship between two or more circular variables. To date, most of the published papers concentrating on detecting 
outliers in circular samples and simple circular regression model with one independent circular variable. However, no 
related studies have been found for more than one independent circular variable. The existence of outliers could alert 
the sign and change the magnitude of regression coefficients and may lead to inaccurate model development and wrong 
prediction. Hence, the intention is to develop an outlier detection procedure using DFFITS statistic for circular case. This 
method has been successfully used in multiple linear regression model. Therefore, the DFFITc statistic for circular variable 
has been derived. The corresponding critical values and the performance of the procedure are studied via simulations. 
The results of simulation studies show that the proposed statistic perform well in detecting outliers in MCRM using DFFITc 
statistic. The proposed statistic was applied to a real data for illustration purposes.
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ABSTRAK

Kertas ini membentangkan pengesanan nilai tersisih dalam model regresi berkeliling berganda (MCRM) dengan model 
tersebut mengkaji hubungan antara dua atau lebih pemboleh ubah berkeliling. Sehingga kini, kebanyakan kertas yang 
diterbitkan menumpukan ke atas pengesanan nilai tersisih dalam sampel berkeliling dan model regresi berkeliling 
ringkas untuk satu pemboleh ubah tak bersandar. Walau bagaimanapun, tiada kajian yang berkaitan telah dijumpai 
untuk lebih daripada satu pemboleh ubah berkeliling tak bersandar. Kewujudan nilai tersisih dapat memberi isyarat 
tanda dan mengubah perubahan magnitud pekali regresi dan mungkin menyebabkan pembangunan model yang tidak 
tepat dan ramalan yang salah. Oleh itu, objektif kajian adalah untuk membangunkan kaedah pengesanan nilai tersisih 
menggunakan statistik DFFITS untuk kes berkeliling. Kaedah ini telah berjaya digunakan dalam model regresi linear 
berganda. Oleh itu, statistik DFFITc untuk pemboleh ubah berkeliling telah diterbitkan. Nilai genting sepadan dan prestasi 
prosedur dikaji melalui simulasi. Hasil kajian simulasi menunjukkan bahawa statistik yang dicadangkan menunjukkan 
prestasi yang baik dalam mengesan nilai tersisih di dalam MCRM menggunakan statistik DFFITc. Statistik yang dicadangkan 
diaplikasikan kepada data sebenar untuk tujuan ilustrasi.

Kata kunci: Data berkeliling; DFFITS; model regresi berkeliling; nilai tersisih

INTRODUCTION

The multiple circular regression model is used to study 
the relationship between two or more circular variables 
as proposed by Ibrahim (2013). The model has interesting 
properties which are very close resemblance to that of 
the multiple linear regression models, including the 
sensitivity to the existence of outliers. Circular statistics 
are used in many different fields such as physics, medicine, 
oceanography, meteorology and biology. One of the most 
common problems in any statistical analysis is the existence 
of some unexpected observations, it is called outliers. Some 
studies have shown that outliers affect the performance of 
standard statistical methodology in modeling, diagnostic, 
and forecasting processes. The existence of outliers affects 
most of the statistical properties of the model (Abuzaid et 
al. 2009; Beckman & Cook 1983; Peña 1990).

	 The	identification	of	outliers	in	circular	data	received	
great	interest	especially	on	the	use	the	new	methods,	which	
were	 extended	 from	 the	 linear	 regression	model	 to	 the	
simple	 circular	 regression	model	 (Abuzaid	 et	 al.	 2013,	
2011;	Hussin	et	al.	2013;	Ibrahim	et	al.	2013;	Rambli	et	
al.	 2015,	 2012).	Recently,	Alkasadi	 et	 al.	 (2018,	 2016)	
considered	 the	 problem	of	 outliers	 in	multiple	 circular	
regression	model. There	are	few	published	works	on	the	
problem	of	outlier	detection	in	multiple	linear	regression	
by	using	the	DFFITS	statistic,	such	as	in	Ampanthong	&	
Suwattee	(2009),	Belsley	et	al.	(1980),	Wong	(1992)	and	
Zakaria	et	al.	(2014).
	 In	 the	 literature,	 the	methods	of	 outliers’	 detection	
in	linear	case	has	been	successfully	used	DFFITS	statistic.	
However,	 there	 is	 no	 published	work	 related	 to	 the	
detection	of	outliers	on	circular	case	using	DFFITS	statistic. 
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In	this	paper,	we	will	extend	the	statistic	of	DFFITS	to	detect	
outliers	in	multiple	circular	regression	models	(MCRM).
	 This	article	is	organized	as	follows:	First,	we	review	
the	multiple	 circular	 regression	model	 and	explains	 the	
estimation	 of	model	 parameters	 via	 the	 least	 squares	
method.	Next,	we	 demonstrate	 the	 proposed	 of	DFFITc 
statistic for	the	MCRM.	After	that,	we	obtains	the	cut-off	
points	and	investigates	the	performance	of	the	proposed	
statistic.	Lastly,	we	discusses	the	detection	of	outliers	in	
multivariate	eye	data	for	illustration	purpose.

THE MULTIPLE CIRCULAR REGRESSION MODEL (MCRM)

The MCRM which was proposed by Ibrahim (2013) study 
the relationship between a dependent circular variable and 
one or more independent circular variables. In this paper, 
we only focuses on two independent circular variables; U1, 
and U2 with the dependent circular variable V. The MCRM 
in terms of the conditional expectation, e iv is given by, 

 E(eiv|u1, u2) = ρ(u1, u2)e
i,μ(u1, u2) = g1(u1, u2) + ig2(u1, u2)

 (1)

where	μ(u1, u2)	is	the	conditional	mean	direction	of v	given	
u1	 and	u2	 and	ρ(u1, u2)	 is	 the	 conditional	 concentration	
towards	μ(u1, u2).

The	parameters	μ(u1, u2)	may	be	estimated	such	that	

	 (2)

 The values of g1(u1, u2)	 and g2(u1, u2)	may be 
estimated using the following trigonometric polynomials 
of a suitable degree (m) as, 

 

 
 
 

  (3)
 

where  

Thus, and based on (3), there are two models as follow;

 

 

 

 (4)

for  i = 1, …, n   and ε = (ε1, ε2) is the vector of random errors 
following a bivariate normal distribution with mean 0 and 
dispersion matrix Σ. The parameters  Akl, Bkl, Ckl, Dkl, Ekl, 
Fkl, Gkl and Hkl, where kl = 0, 1, …, m, the standard errors 
as well as the dispersion matrix Σ can then be estimated 
using generalized least squares method. 
 We estimate the parameters of MCRM by using the 
least squares method. For a random sample of size n from 
(4), in order to ensure identifiability, it was assumed that 
B00 = C00 = D00 = F00 = G00 = H00 = 0. 
	 Subsequently,	V(1)	and	V(2)	were	written	in	the	matrix	
form	as

 V(1) = Uλ(1) + ε(1)

 V(2) = Uλ(2) + ε(2).	 (5)

Thus, the least squares estimation turns out to be given 
by 

 λ

λ

	 (6)

where U	is	the	matrix	of	the	combination	of	cosine	and	
sine	functions,	such	that		 	 	 	

 	 (7)

	 The	covariance	matrix	of	the	residuals,	Σ	is	estimated	
as	follow	
        
 Σ 	 (8)

where R0 = (R0(p, q))p,q=1,2 and R0(p,q) = V(p)΄V(q) – V(p)΄

U(Uʹ U)–1 Uʹ V(q), is an unbiased estimation of Σ and m is 
a suitable degree (Ibrahim 2013). 

DFFITc STATISTIC OF MCRM

One	of	the	methods	to	identify	outliers	in	linear	regression	
is	DFFITS	statistic	which	measures	the	effect	of	deleting	
a	 given	 observation	 on	 the	 predicted	 or	 fitted	 values.	
Belsley	et	al.	(1980)	proposed	DFFITS	statistic	which	is	
defined	as,
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 	 (9)

for	, i	=	1,2,	…,	n	,	where	 	and	 	are	the	prediction	for	
point	i	with	and	without	point	i	included	in	the	regression,	
respectively.	S(-i)	 denotes	 the	 standard	 error	 estimated	
without	the	point	i	and	hii is	the	leverage	of	the	point.	The	
DFFITS	statistic	is	large	if	the	data	point	has	high	leverage	
which	leads	hii	to	be	close	to	unity.	Belsley	et	al.	(1980)	

suggested	that	any	observation	for	which	  

indicates	 outliers,	where	 k	 is	 the	 number	 of	 predictor	
variables	and	n	is	the	sample	size	(Cousineau	&	Chartier	
2010;	Rousseeuw	&	Leroy	2005).	This	section	extends	the	
DFFITS	to	identify	possible	outliers	in	the	MCRM.	
 An outlier detection procedure for the MCRM is 
developed using row deletion approach. In regression 
model, it is expected that the parameter estimates, variance 
of residuals, covariance matrix as well as the standard 
errors will be affected if an outlier exists in the data. In 
particular, we look at the effect of removing an observation 
on the fitted values, at the same time it will effects on 
standard error estimated and covariance matrix of residuals.

The proposed of DFFITc statistic is given by,

  (10)

where  denotes the prediction from the full regression 
model for the ith observation, meanwhile  denotes the 
prediction when the ith observation is deleted. S(–i)denotes 
the standard error which is estimated without the point i 
while hjj is the jth diagonal element of (UʹU)–1 where the 
matrix U is the combination of cosine and sine functions as 
given in Equation (7). The ith observation is identified as an 
outlier if the value of DFFITc exceeds the pre-specified cut-
off point, which will be obtained in the following section.

CRITICAL VALUES OF DFFITc STATISTIC

A	 simulation	 study	 is	 carried	 out	 to	 obtain	 the	 cut-off	
points	of	the	DFFITc	statistic	for	different	values	of	different	
sample	sizes	n =	20,	40,	60,	80,	100	and	standard	deviations	
and	 .	 For	m =	 1,	 ten	 coefficients	 are	 to	 be	 estimated;	
namely,	  and .	For	simplicity,	
we	set	the	true	values	of	A0	and	E0	of	the	MCRM	of	order	
m=1	to	be	zero,	while	the	other	eight	parameters,	namely,	

	 and	 	 are	 obtained	 by	 using	 the	
standard	additive	trigonometric	polynomial	equations		cos	
(a + u1 + u2)	and	sin	(a + u1 + u2).	Then,	these	functions	are	
expanded	using	standard	additive	trigonometric	function.	
For	example,	when	a =	2,	we	have	cos	(2	+	u1 + u2)	=	0.4161	
cos	u1	cos	u2	–0.9093	cos	u1	sin	u2	–0.9093	sin u1	cos	u2 
+0.4161	sin	u1	cos	u2	and	sin	(2	+	u1 + u2)	=	0.9093	cos	u1 

cos	u2	–0.4161	cos	u1	sin	u2	–0.4161	sin	u1	cos	u2	–0.9093	
sin	u1	sin	u2.	Then,	by	comparing	with	(4),	the	true	values	
of		A1, B1, C1, D1, E1, F1, G1	and	H1  to	be	0.4161,	–0.9093,	
–0.9093,	0.4161,	0.9093,	–0.4161,	–0.4161	and	–0.9093,	
respectively,	with	A0	and	E0	being	zero.	Similarly,	we	can	
also	get	different	sets	of	true	values	by choosing	different	
values	of	a (Ibrahim	2013).
 Then, the 10%, 5% and 1% upper percentiles of 
the maximum values of DFFITc are obtained. The full 
procedures to obtain the critical values are summarized 
as follows;

1.	 Generate	 the	 independent	 variables	U1	 and	U2	 of	
size	n	from	von	Mises	distribution	with	mean	p and	
concentration	parameters	3	and	2	(VM (p ,	3)	and	VM 
(p ,	2)),	respectively.

2. Generate ε1 and ε2 of size n from  For 

a fixed a=2, obtain the true values of λ = A0, A1, B1, 
C1, D1, E0, E1, F1, G1 and H1. Here, let the true values 
of A0 and E0 to be zero. Then, calculate V1j and V2j,

  j = 1, …, n, using (4) .

3. Obtain the circular variable , j = 1, …, n 

 using (2).

4. Fit the generated circular data using the MCRM to give 
the parameter estimates of   

and  as given in (6).

5. Exclude the ith row from the generated circular data, 
where i = 1, …, n. For each i, repeat steps (4) for the 
reduced data set to obtain .

6. Compute DFFITcji for each i from (10).

7. Specify the maximum value of DFFITcji.
 
 The process is repeated 2000 times for each 
combination of sample size n and standard deviation (σ1, σ2)
= (0.03, 0.03),(0.05, 0.05), (0.1, 0.1) and (0.3, 0.3). 
	 Table	 1	 represents	 the	 critical	 values	 at	 5%	upper	
percentiles	 for	 different	 sample	 size	 n	 and	 standard	
deviation	(σ1, σ2) at	a=2.	The	others	critical	values	can	be	
obtained	from	the	authors	upon	request. The	results	show	
that,	for	a	fixed	σ1  and	σ2 ≥ σ1,	the	cut-off	point	increases	
as	σ1  gets	larger.	A	similar	pattern	is	observed	for	a	fixed	
σ2 where	σ1 ≥ σ2.	This	is	because	the	residual	error	values	
will	be	small	and	fluctuated	around	the	unit	circle.	Thus,	
for	low	leverage	points,	the	values	of	DFFITc	are	expected	to	
be	small,	whereas	as	the	leverage	goes	to	1	the	distribution	
of	the	DFFITc value	enlarges	infinitely.	On	the	other	hand,	
the	cut-off	points	have	a	decreasing	function	of	the	sample	
size	n.
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TABLE 1. Cut-off points at 5% upper percentiles of DFFITc statistic at a=2

n σ1

σ2

0.03 0.05 0.08 0.1 0.3

 
 20
 
 

0.03
0.05
0.08
0.1
0.3

0.0761
0.0707
0.0795
0.0804
0.0720

0.0809
0.0738
0.0815
0.0822
0.0722

0.0835
0.0780
0.0817
0.0848
0.0723

0.0850
0.0782
0.0827
0.0845
0.0750

0.0888
0.0799
0.0864
0.0859
0.0765

 
 40
 
 

0.03
0.05
0.08
0.1
0.3

0.0475
0.0489
0.0510
0.0536
0.0668

0.0490
0.0500
0.0521
0.0536
0.0677

0.0552
0.0531
0.0522
0.0539
0.0679

0.0579
0.0560
0.0535
0.0543
0.0698

0.0695
0.0704
0.0704
0.0690
0.0693

 
 60
 
 

0.03
0.05
0.08
0.1
0.3

0.0352
0.0367
0.0388
0.0389
0.0487

0.0381
0.0370
0.0391
0.0398
0.0499

0.0426
0.0395
0.0391
0.0403
0.0500

0.0445
0.0421
0.0411
0.0404
0.0511

0.0550
0.0540
0.0538
0.0525
0.0514

 
 80
 
 

0.03
0.05
0.08
0.1
0.3

0.0275
0.0289
0.0310
0.0305
0.0411

0.0318
0.0291
0.0314
0.0313
0.0419

0.0347
0.0328
0.0316
0.0313
0.0426

0.0357
0.0340
0.0321
0.0318
0.0431

0.0516
0.0513
0.0502
0.0486
0.0445

 
 100

 
 

0.03
0.05
0.08
0.1
0.3

0.0246
0.0259
0.0263
0.0250
0.0298

0.0273
0.0263
0.0266
0.0253
0.0323

0.0296
0.0276
0.0272
0.0282
0.0365

0.0312
0.0276
0.0284
0.0293
0.0394

0.0418
0.0416
0.0411
0.0418
0.0421

THE PERFORMANCE OF DFFITc STATISTIC

A simulation study is carried out to investigate the 
performance of DFFITc statistic for detecting outliers in the 
MCRM. Five different sample size are considered, n = 20, 
40, 60, 80 and 100 with different value of (σ1, σ2) = (0.03, 
0.03), (0.05, 0.05), (0.1, 0.1) and (0.3, 0.3). The observation 
at position d, say vd, is contaminated as follows:

 

where	 	is	the	response	value	after	contamination	and	τ	
is	the	degree	of	contamination	in	the	range	 0 ≤ τ ≤ 1.	The	
generated	data	of	U1, U2	and	V	are	then	fitted	to	obtain	the	
parameter	estimates	of	 	 and	
.	Consequently,	exclude	 the	 ith	 row	from	the	sample,	

for	 i=1,	…,	n	 and	 refit	 the	 remaining	 data	 using	 (6).	
Then, the DFFITcji is	calculated.	If	the	values	of	DFFITc 
is	maximum	and	greater	 than	 the	corresponding	cut-off	
point,	then	the	procedure	has	correctly	detecte	the	outlier	
in	 the	data.	The	process	 is	 carried	out	5000	 times.	The	
power	of	performance	of	the	procedure	is	then	examined	
by	computing	the	percentage	of	the	correct	detection	of	
the	contamination	observation	at	point	d.
 Figure 1 illustrates the power of performance of DFFITc 
statistic for n=100 and four values of standard deviation 
(σ1, σ2) = (0.03, 0.03), (0.05, 0.05), (0.1, 0.1) and (0.3, 
0.3). It is shown that the power of performance is an 

increasing function of contamination level provided that 
the standard deviation, and decreasing function. The power 
of performance depends on the level of contamination, τ, 
where the proposed statistic is able to detect almost all 
contamination points for τ > 0.3. 

FIGURE 1. Power performance for DFFITc statistic for n=100

 Figure 2 shows the performance of DFFITc statistic 
for and different sample sizes, n. For DFFITc statistic, the 
power of performance is an increasing function of sample 
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size n. It is also clear and show good performance if the 
contaminated level is greater than 0.3, (τ ≥ 0.3). Similar 
results were obtained for fixed values of (σ1, σ2) = (0.1, 0.1) 
and different sample sizes n as shown in Figure 3. These 
results are supported by Alkasadi et al. (2018) and Ibrahim 
et al. (2013).

PRACTICAL EXAMPLE: MULTIVARIATE EYE DATA

The multivariate eye data consist of 23 observations of 
glaucoma patients recorded using Optical Coherence 
Tomography at the University Malaya Medical Centre, 
Malaysia for three angles v, u1, u2 (Alkasadi et al. 2018 & 
Ibrahim 2013).
 Thus, the MCRM is used to fit the multivariate eye data. 
The least squares parameter estimates of MCRM are given 
as follow;

 = –1.076,  = 7.0890,  = –11.6852,  = 2.9691, 
 =  –1.4526,  = 3.1246,  = –9.9634,  = 16.5369, 
 = –4.2270,  = 2.2351,  = 0.17 and  = 0.14.

 The MCRM of multivariate eye data respect to  (u1, u2)  
and  (u1, u2) are given by

 (u1, u2) = –1.076 + 7.0890 cos u1 cos u2 – 11.6852 
cos u1 sin u2 + 2.9691 sin u1 cos u2 – 1.4526 
sin u1 sin u2 

 (u1, u2) = 3.1246 – 9.9634 cos u1 cos u2 + 16.5369 
cos u1 sin u2 – 4.2270 sin u1 cos u2 + 2.2351 
sin u1 sin u2

 Figure 4 illustrates the Q-Q plot for residuals. The 
corresponding plot of ε1 shows that almost all points are 
adjacent to the straight line excluding only two points 
positioned at the upper right of the plot (observations 
number 1 and 23). Meanwhile, plot of ε2 also showed that 
almost all points are adjacent to the straight line, excluding 
only one point positioned at the upper right of the plot 
(observation number 1). 
 By applying DFFITc statistic on the regression model 
of multivariate eye data in order to detect any possible 
outliers, we obtain the cut-off point equals to 0.08134. 
Figure 5 shows only one observation is above the specific 
cut-off point, which is observation number one. 
 Table 2 presents the effect of removing of detected 
outlier on the parameters estimates. Upon excluding 
observation 1 from the multivariate eye data set changes 
the value of the parameters estimates where the standard 

FIGURE 2. Power performance for DFFITc statistic 
for 

FIGURE 3. Power performance for DFFITc statistic 
for 

FIGURE 4. The Q-Q plot for residuals of fitted MCRM for eye data (n =23)
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the quantiles are close to the straight line indicating the 
best fit for the data.

CONCLUSION

A new outlier detection statistic for multiple circular model was 
proposed by extending the DFFITc statistic from the multiple 
linear regression model and based on row deletion approach.
 The cut-off points are obtained and the power of 
performance were investigated via simulation study. The 
statistic showed a very good performance in identifying 
prospective outlier in the MCRM even for lower level of 
contamination. The application of the proposed statistics 
on the multivariate eye data revealed one outlier which is 
consistent to the findings of Alkasadi et al. (2018, 2016).
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3.124
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(0.047)
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(0.036)
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(0.036)
(0.030)
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(0.133)

-

FIGURE 6. Q-Q plot of circular residuals after removing observation number 1 (n =22)
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