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High Breakdown Estimator for Dual Response Optimization 
in the Presence of Outliers

(Penganggar Penguraian Tinggi untuk Pengoptimuman Gerak Balas Dual dengan Kehadiran Titik Terpencil)

HABSHAH MIDI* & NASUHAR AB. AZIZ 

ABSTRACT

Nowadays, dual response surface approach is used extensively, and it is known as one of the powerful tools for robust 
design. General assumptions are the data is normally distributed, and there is no outlier in the data set. The traditional 
procedures for robust design is to establish the process location and process scale models of the response variable based 
on sample mean and sample variance, respectively. Meanwhile, the ordinary least squares (OLS) method is often used to 
estimate the parameters of the regression response location and scale models. Nevertheless, many statistics practitioners 
are unaware that these existing procedures are easily influenced by outliers, and hence resulted in less accurate estimated 
mean response obtained through non-resistant method. As an alternative, the use of MM-location, MM-scale estimator, 
and MM regression estimator is proposed, in order to overcome the shortcomings of the existing procedures. This study 
employs a new penalty function optimization scheme to determine the optimum factor settings for robust design variables. 
The effectiveness of our proposed methods is confirmed by well-known example and Monte Carlo simulations. 
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ABSTRAK

Pada masa kini, pendekatan gerak balas permukaan dual telah digunakan secara meluas, dan ia juga dikenal pasti sebagai 
salah satu kaedah yang berkuasa untuk reka bentuk teguh. Secara umum, data diandaikan tertabur normal, dan tiada 
titik terpencil di dalam set data. Prosedur tradisi bagi reka bentuk teguh ialah untuk membina model lokasi dan model 
skala proses berdasarkan min dan varians sampel. Sementara itu, kaedah kuasa dua terkecil biasa (OLS) sering digunakan 
untuk menganggar parameter bagi model sambutan regresi untuk proses min dan varians. Walau bagaimanapun, ramai 
pengamal statistik yang tidak menyedari bahawa prosedur sedia ada sangat senang dipengaruhi oleh titik terpencil dan 
mengakibatkan penganggaran sambutan min diperoleh daripada kaedah tidak teguh, kurang tepat. Sebagai alternatif, 
penggunaan kaedah pengganggar teguh MM-lokasi, MM-skala dan MM regresi dicadangkan untuk mengatasi kelemahan 
prosedur sedia ada. Kajian ini menggunakan skima baru untuk pengoptimunan fungsi penalti bagi menentukan tetapan 
faktor yang optimum untuk pemboleh ubah reka bentuk teguh. Keberkesanan kaedah baru yang dicadangkan disahkan 
dengan contoh terkenal dan simulasi Monte Carlo. 

Kata kunci: Gerak balas permukaan dual; MM-lokasi dan MM-skala; pengoptimunan fungsi penalti; titik terpencil

INTRODUCTION

Robust design is an effective method to improve product 
quality and production methods by determining the 
optimum factor settings. The objective of this design was 
to achieve the desired target while keeping the design’s 
variance low at the same time. Robust design has been 
extensively used among engineers in designing methods 
to solve engineering problems in order to improve product 
quality (Dehnad 2012; Velazo et al. 1991). Taguchi was 
the first person who introduced the concept of robust 
design in reaching the desired target and maximizing 
signal-to-noise ratios. However, several authors noted 
a few drawbacks embodied into Taguchi’s approach in 
robust design (Easterling 1985; Myers et al. 1973; Vining 
& Myers 1990). As a result, many research efforts have 
been made to rectify these weaknesses. 

	 Vining and Myers method (1990), also known as 
VM method, was the first method which introduced dual 
response surface optimization (DRSO) using response 
surface methodology (RSM). This is the method where 
the response models for process location and scale need 
to be established at the outset. Furthermore, this method 
simultaneously optimizes the objective function of process 
variance, which restricts the process mean towards the 
desired target. The estimated process location and process 
scale of the response variables, denoted as  and  
were fitted to the second-order polynomial model at each 
design point where

	 		  (1)
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and
	
	 	 (2)

Hence, the VM method optimization scheme is:

	 minimize  

	 subject to 	 (3)

where τ is the target value.
	 Del Castillo (1993) observed that the VM method using 
Lagrange multipliers to simultaneously optimize process 
location and scale. However, this idea might be impractical 
and definitely imprecise for global best solution, due 
to restriction of the process location which is assumed 
equal to specific target value, τ. Thus, Del Castillo (1993) 
proposed generalized reduced gradient (GRD) technique 
with inequality constraints to rectify the drawback of the 
VM optimization method.
	 Lin and Tu (1995) proposed an optimization scheme 
based on squared-loss model, which is known as mean 
square error (MSE). This model deals with square bias and 
minimizes the variance component of the factor settings. 
The Lin and Tu (LT) method is to,

	 minimize MSE =  	 (4)

	 This optimization scheme is widely used in order 
to find the optimum settings in robust design (Boylan & 
Cho 2013; Goethals & Cho 2011; Park & Cho 2003; Park 
& Leeds 2016). However, the problem with (LT) method 
is that its function does not clearly specify how far the 
estimated mean response  is from the desired target 
τ. Therefore, Copeland and Nelson (1996) modified LT 
method by introducing some restrictions or certain limits 
on the variation of  with the desired target τ. 
	 Ding et al. (2004) proposed a natural extension of LT 
method by imposing relative weights on bias and variance 
term. Their method called weighted MSE (WMSE) is:

	 minimize WMSE = . 	 (5)

	 This is the method where w = relative weight factor (0 
≤ w ≤ 1). The data-driven approach is used to determine the 
value of  w, but it also has a major weakness. Therefore, 
Jeong et al. (2005), Lee and Kim (2012) and Ma and Tian 
(2009) introduced the proper procedure to determine the 
value of w by taking into the decision maker’s preference.
	 Amongst all of the methods mentioned, most of the 
existing methods failed to obtain an estimate of mean 
response close to the target value with small variation. 
Therefore, Baba et al. (2015) proposed a penalty function-
based approach as another alternative optimization scheme. 
The Penalty method (PM) is, 

	 minimize = 	 (6)

where ξ is the penalty constant (0 ≤ ξ ≤ ∞). The performance 
of this method was reported to be more effective compared 
to the traditional approach.
	 The response functions for (1) and (2) are generally 
constructed by the ordinary least squares (OLS) method. 
Data analyzers prefer OLS due to the universal acceptance, 
elegant statistical properties and computational simplicity. 
Moreover, this method has to follow the assumption 
regarding the experimental data, where the data are 
assumed to be normally distributed with no outliers or 
contamination point. This will provide accurate optimal 
factor settings. The normality assumption can be violated 
in the presence of one or more outliers in the data set, 
which results in unreliability of the optimum response. The 
traditional approach is not resistant to outliers. Therefore, 
a new approach needs to be established.
	 In the presence of outliers, Park and Cho (2003) 
suggested the use of robust location and robust scale 
as alternative estimators for sample mean and standard 
deviation. Specifically, the estimators for scale that had 
been used were inter-quartile range (IQR) and mean 
absolute deviation (MAD). Besides that, median was used 
for the robust design’s location. The performances of these 
estimators were reported to be more efficient in terms of 
smaller bias and mean square error (MSE) when the data 
were contaminated. Nonetheless, median and MAD were 
well-known to be inefficient under normality (Bakar & 
Midi 2015). 
	 This paper proposes the use of an alternative outlier-
resistant MM-estimator, introduced by Yohai (1987), to 
estimate the location and scale of the response variables. 
This estimator is highly efficient and has a high breakdown 
point. The MM-estimator is also employed to estimate 
the parameters of the process location and process scale 
models.
	 The next section of this paper gives an overview 
of various robust location and scale. The proposed 
optimization procedures are explained in details in the 
section that follows. Monte Carlo simulation technique 
was carried out in this research and discussed subsequently. 
After that, we provide an illustration of a numerical 
example, and conclusion of this research is as in the last 
section.

ROBUST LOCATION AND SCALES

Sample variance and sample mean are expected to be 
easily affected by outliers. In other words, replacing only 
one of n observations with large value can negatively 
affect the value of the sample mean. Tukey (1960) 
pointed out that this estimator can be heavily influenced 
by any single outlier, for example, if Yi goes to  ±∞, then 

 goes to ±∞. Since the resulting optimum responses 
are inefficiently determined by the sample variance and 
mean, Park and Cho (2003) introduced replacement of 
sample mean with sample median, whereby, MAD and IQR 
were used as the alternatives to sample variance. These 
estimators have been successfully applied in various 
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areas and are well-known as outlier-resistant estimators. 
Although these estimators are resistant to outliers, they 
are not reliable under normality assumption (Lee et 
al. 2007). To overcome this problem, Park and Leeds 
(2016) used the Hodges-Lehman estimator and Shamos 
estimator as alternatives to the location and scale estimate. 
According to Hettmansperger and McKean (2010), the 
breakdown point of both Hodges-Lehman estimator and 
Shamos estimator is 29.3%. 
	 This paper proposes the use of another outlier-
resistant estimator for estimating the location and scale 
of the response value. This estimator was proposed by 
Yohai (1987) and is called the MM-estimator. It is not only 
highly efficient and robust, but it also has high breakdown 
property. In addition, the MM-estimator refers to the fact 
that more than one M-estimation procedures may be used 
to calculate the final estimate. Consider the following 
location-scale model: 

Let x1, x2, …, xn be n observations on the real line 
satisfying  xi = μ + σεi.

where εi, i = 1, 2, …, n, is independent, and known as 
identically distributed (i.i.d) observation with variance 
equal to 1. The interest of the model is in estimating 
μ and σ. The procedures for finding MM-estimator are 
summarized as follows:

Step 1:	The S-estimator (Rousseuw 1984) is computed to 
obtain the initial consistent estimate of the location, 
μ0 and scale estimate,   

Step 2:	Compute residuals ei from Step 1 and then compute 
M estimate of scale,  where  is the solution to

 
  

	 where ψ = ρʹ has to be redescending ρ function 
such as Hampel, Tukey’s Bisquare and Tanh . In 
this paper, we employed Tukey’s Bisquare function 

Step 3:	Compute M estimate of  using ρ1. Yohai (1987) 
highlighted that for Tukey’s Bisquare weight 
function, employing c1 = 4.68, result in high 
efficiency.  is a solution to  where 

, and . Upon convergence,  and  is 

the MM location and MM scale estimates. The same 
procedures were applied to estimate the parameters 
of models (1-2) with a slight change, where 
polynomial regression model was considered 
instead of location model. 

	 In this research, we suggest to employ the MM-
estimator to estimate the mean and the standard deviation 
of the response variables and also for estimating the 
parameters of models (1-2).

	 This paper suggests an alternative model, called Model 
H, to compute the location and scale estimates. Model 
A - G has been proposed by Park and Leeds (2016) in 
order to estimate the location and scale responses of the  
y. Table 1 shows the various estimators that will be used 
for comparative analysis.

THE PROPOSED OPTIMIZATION PROCEDURE

Suppose that  and   are the fitted response functions 
for the mean and the variance, respectively. According to 
Park and Leeds (2016), logarithm-transform values for the 
sample scale response are employed to avoid the possibility 
of getting negative variance estimates. In practice, the 
(1) and (2) models are often estimated by using the OLS 
method (Boylan & Cho 2013; Park & Cho 2003; Park 
& Leeds 2016). Data analysis based on the least squares 
estimator is less efficient and not reliable when outliers are 
present in the data (Riazoshams et al. 2010). As a remedy, 
robust regression technique has been considered to lessen 
the effects of outliers. In this research, the MM-regression 
estimator was used to estimate the parameters for model 
in (1) and (2) instead of the OLS method.
	 The main goal of the dual response is to determine the 
optimum factor setting of the design variable, x. In order 
to get the best overall combination of design point, Park 
and Leeds (2016) considered the MSE-based optimization 
scheme as follows:

	 minimize MSE = .	 (8)

	 As mentioned earlier, this function does not clearly 
specify how far the estimated mean response  is 
from the desired target τ. Therefore, in this study, an 
alternative optimization scheme, which is based on the 
penalty function method proposed by Baba et al. (2015) 
is employed. The Penalty method is to, 

	 Minimize = 	 (9)

where  and   are the fitted values based on MM-
estimator, τ  is the desired value and ξ is penalty constant 
(0 ≤ ξ ≤ ∞). Since the possible interval value of ξ is wider, 
the optimal penalty constant denoted as ξ* is determined by 
employing the procedure of Jeong et al. (2005). As proven 
by Lee and Kim (2012), diminishing the less important 
value of ξ is needed. In this study, the Genetic Algorithm 
(GA) optimization was used to obtain the optimal factor 
settings. R software was utilized to analyze this problem.

MONTE CARLO SIMULATION RESULTS AND VERIFICATION

Monte Carlo simulation is carried out in order to assess 
the performance of the proposed method (employing the 
penalty optimization scheme and Model H) compared to 
existing methods (employing the MSE-based optimization 
scheme and Models (A-G), as shown in Table 1). Following 
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Park and Cho (2003), five responses yi = (yi1, yi2, …, yi5) 
are generated from normal distribution with mean μ(xi) 
and standard deviation σ(xi) at each design point xi = (xi1, 
xi2, xi3), i = 1, 2, …, 27, which created 135 responses. The 
iteration is 1000 and assuming the target value was τ = 50, 
the μ(x) and σ2(x) are as shown below:

	 μ(xi) = 50 + 5(x1 + x2 + x3)
2

	 σ2(xi) = 100 + 5(xi – 0.5)2 + x2 + x3.	
(10)

	 Next, to see whether the lack of normally distributed 
responses would affect the estimators, the responses were 
also generated from Laplace and Logistic distributions.
	 To further investigate the effect of outliers, the data 
were contaminated by generating three outliers (2.2% 
contamination) from N(250,102). The good data were then 
replaced by these three outliers, which were the 1st response 
of the second variable, the 27th observation of the third 
response variables, and the 14th observation of the fourth 
response variable. 
	 The new penalty optimization of Baba et al. (2015) 
based on Model A - Model H was then applied to the data. 
In order to see the improvement of the performance on new 

penalty optimization, the MSE-based optimization scheme 
in equation (8) was applied. Bias  and MSE were 
used as the selection criteria to evaluate the effectiveness 
of the estimators. Thus, model with smallest values of bias 
and MSE were sought. The results of the eight models are 
exhibited in Tables 2 - 5.
	 Let us first focus our attention to Tables 2 and 3 for 
MSE-based optimization scheme. From the performances, 
it can be seen that the presence of outliers changes the 
values of bias and MSE dramatically. Model A - Model G 
are significantly affected by outliers. Furthermore, it can 
be seen that the values of bias and MSE have significantly 
increased markedly for normal and non-normal distribution 
with contamination in the data. Nevertheless, model H 
seems to be slightly affected by outliers as indicated by 
the smaller values of the bias and MSE. Besides that, the 
bias and MSE also seem to be only slightly changed for 
distribution considered. Thus, the optimal mean response 
for model H is more robust and efficient compared to other 
well-known conventional models, since it has the smallest 
bias and MSE for each distribution considered.
	 The results of Tables 4 and 5 illustrate the performance 
of the new proposed penalty function optimization scheme. 
Like the MSE based optimization scheme, it is observed that 

TABLE 2. Simulation result based on estimated MSE and bias of the optimal                                                                                  
for model A-D with MSE-based optimization scheme

Distribution
Model A Model B Model C Model D

Bias MSE Bias MSE Bias MSE Bias MSE

Normal
Normal Contaminated
Laplace
Logistic

1.23
0.74
1.62
2.34

3.05
3.32
6.16
11.66

0.92
1.14
1.07
1.68

2.00
3.03
2.85
6.39

0.82
1.01
0.88
1.50

1.68
2.26
1.99
5.03

1.57
1.83
1.79
2.69

4.90
6.89
7.40
15.14

TABLE 3. Simulation result based on estimated MSE and bias of the optimal                                                                                   
for model E-H with MSE-based optimization scheme

Distribution
Model E Model F Model G Model H

Bias MSE Bias MSE Bias MSE Bias MSE

Normal
Normal Contaminated
Laplace
Logistic

1.48
1.77
1.76
2.59

4.52
6.38
7.16
14.59

0.94
1.26
1.11
1.69

2.06
3.46
3.41
6.83

0.86
1.06
0.90
1.57

1.84
2.40
2.21
5.64

0.74
0.86
0.80
1.21

1.05
2.36
1.95
3.79

TABLE 1. Estimator combination used in comparative analysis

Model Location estimators Scale estimators
Model A
Model B
Model C
Model D
Model E
Model F
Model G
Model H

Mean
Median
Median

Hodges-Lehman estimator
Median

Hodges-Lehman estimator
Hodges-Lehman estimator
MM-estimator for location

Variance
MAD
IQR

Shamos estimator
Shamos estimator

MAD
IQR

MM-estimator for scale
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model H’s performance is more superior relative to other 
models under different probability distribution functions. 
Model H consistently having the smallest bias and MSE 
compared to the other seven models, regardless of the 
optimization scheme. 
	 Next, a comparison was made between the performance 
of the proposed penalty optimization scheme and the 
MSE-based optimization scheme. The results of Tables 2 
and 5 clearly show that the propose penalty optimization 
scheme possesses smaller bias and MSE for all models 
(A-H) compared to the MSE-based optimization scheme 
irrespective of the distribution functions considered in this 
study. This shows that the proposed scheme outperformed 
the existing scheme. 

NUMERICAL EXAMPLES

This example was taken from the case study performed 
by Park and Cho (2003). The experiment consisted of 33 

factorial design with three control factors, namely mold 
temperature (x1), humidity (x2) and, the injection flow rate 
(x3). The objective of the study was to investigate the effects 
of the three control factors on the coating thickness (yij) of 

wafers. The desired target value was τ = 50 microns and 
five replicates were made at each of the 27 design points. 
Three contaminated data were observed at y10, 2 = 239, 
y17, 4 = 238 and y25, 3 = 244. Since the unusual observations 
occurred in the data series, the outlier-resistant estimators 
are believed to be more suitable to be used in order to find 
the optimal operating conditions. Therefore, the sample 
mean , log-transformation variance , median , 
log-transformation MAD square , log-transformation 
IQR square , Hodges-Lehman location estimator 
(HL), log-transformation Shamos estimator square , 
MM-location estimator (ML) and log-transformation MM-
scale estimator  at each design points are computed. 
	 All the eight preceding models were used to estimate 
the mean and the variance of the response y. Table 6 reports 
the optimal settings, bias and MSE of the estimated mean 
responses based on the eight models involved in this study. 
It can be seen from the study that Model H has the least 
bias, variance and MSE compared to the other models. 
The results of this case study were consistent with the 
simulation results in Monte Carlo Simulation Results and 
Verification section.

TABLE 4. Simulation result based on estimated MSE and bias of the optimal      
for model A-D with new penalty function-based optimization scheme

Distribution
Model A Model B Model C Model D

Bias MSE Bias MSE Bias MSE Bias MSE

Normal
Normal Contaminated
Laplace
Logistic

0.25
0.23
0.11
0.43

0.10
0.33
0.11
0.48

0.20
0.15
0.16
0.26

0.18
0.09
0.08
0.24

0.14
0.10
0.16
0.19

0.07
0.04
0.14
0.13

0.23
0.11
0.07
0.79

0.23
0.05
0.12
1.62

TABLE 5. Simulation result based on estimated MSE and bias of the optimal  
for model E-H with new penalty function-based optimization scheme

Distribution
Model E Model F Model G Model H

Bias MSE Bias MSE Bias MSE Bias MSE

Normal
Normal Contaminated
Laplace
Logistic

0.24
0.07
0.11
0.86

0.26
0.05
0.22
1.67

0.13
0.11
0.21
0.46

0.05
0.06
0.12
0.58

0.14
0.06
0.05
0.22

0.06
0.02
0.03
0.19

0.05
0.05
0.07
0.10

0.03
0.03
0.05
0.08

TABLE 6. Estimates generated using alternative estimators with new penalty optimization scheme

Model Optimal settings Bias Variance MSE

A
B
C
D
E
F
G
H

(0.017,-0.067,-1.00)
(0.011,0.124,-0.963)
(-0.229,0.345,-0.732)
(-0.08,0.055,-0.901)
(-0.012,0.043,-0.817)
(-0.102,0.153,-1.00)
(-0.196,0.265,-0.834)
(-0.18,0.444,-0.899)

2.52
4.80
3.78
4.27
3.64
4.97
4.24
1.32

3.89
3.43
3.25
3.95
4.03
3.30
3.12
3.42

10.24
26.47
17.54
22.18
17.28
28.00
21.10
5.16
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CONCLUSION

The main focus of this study was to propose using the MM 
estimator to estimate the location and scale estimators of 
the response variables as well as to estimate the parameters 
of the process location and scale models. We also propose 
employing a new penalty function optimization scheme 
to obtain the optimal factor settings and subsequently 
estimating the optimal mean response. On the other 
hand, the existing procedures compute process location 
and process scale based on different location and scale 
estimators as exhibited in Table 1. Moreover, the Ordinary 
Least Square (OLS) is used to estimate the parameters of the 
process location and scale models and employed the MSE-
based optimization scheme. The Monte Carlo simulations 
studies and numerical example were carried out to compare 
the performance of the newly proposed method with the 
existing methods. The simulations and numerical example 
have shown that, the newly proposed method offers 
substantial improvement over the existing methods. The 
proposed method can significantly reduce bias, variance 
and MSE of the estimated mean response regardless of the 
distribution functions considered in this study.
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