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ABSTRACT

Understanding intraspecific phenotypic plasticity is a prerequisite of stock identification, evolutionary studies, 
sustainable utilization, and fishery conservation. In this study, intraspecific phenotypic plasticity was assessed in terms 
of the external features (i.e. meristic, morphometric, and truss-based morphometrics) of the wild Nandus populations 
from four freshwater sources in Southwestern Bangladesh. Fish samples were collected from Arial Kha River, Madaripur 
(AKRM, n=26); Nabaganga River, Jhenaidah (NRJ, n=22); Bohnni Baor, Gopalganj (BBG, n=26); and Dhakuria Beel, 
Jashore (DBJ, n=22). Meristic, morphometric, and truss network data were subjected to one-way ANOVA followed 
by post hoc (Tukey-HSD) test. The meristic counts of all the samples demonstrated significant differences only in one 
of the six characters. By contrast, significant differences were observed in 8 morphometric characters and 31 truss 
network data from 16 morphometric characters and 35 truss network data, respectively. Principal component (PCA) 
and canonical variate analyses (CVA) were also performed on morphometric and truss-based network data. Meristic 
and morphometric results from PCA and CVA showed that populations were completely intermingled, forming a 
compact cluster within intrapopulation levels, while truss morphometric characters formed a separate cluster. Three 
dendrograms independently based on phenotypic relationships among the individuals of the four populations also 
confirmed the absence of phenotypic differentiation among the population due to clustering of different groups. 
The baseline information resulting from the current study would be useful for genetic studies and further in situ 
conservation of Nandus populations in Bangladesh.

Keywords: Canonical variate analysis; freshwater; morphometric; meristic; nandus; principle component analysis; 
Truss morphometry 

ABSTRAK
Memahami keplastikan fenotip intrakhusus adalah satu pra-syarat untuk mengenal pasti stok, kajian evolusi dan 
pemanfaatan lestari dan pemuliharaan dalam perikanan. Dalam kajian ini kepelbagaian fenotip intrakhusus dinilai 
dari segi ciri luaran (iaitu meristik, morfometri dan morfometri dasarkan truss) daripada populasi liar ikan nandus 
dari empat sumber air tawar di selatan-barat Bangladesh. Sampel ikan dikumpulkan dari Arial Kha River, Madaripur 
(AKRM), (n = 26); Sungai Nabaganga, Jhenaidah (NRJ), (n = 22); Bohnni Baor, Gopalganj (BBJ), (n = 26); dan 
Dhakuria Beel, Jashore (DBJ), (n = 22). Data meristik, morfometri dan rangkaian truss dianalisis menggunakan 
varians satu arah (ANOVA) diikuti dengan ujian Post-hoc (Tukey-HSD). Perhitungan meristik untuk kesemua sampel 
menunjukkan perbezaan yang signifikan hanya dalam satu ciri daripada enam ciri manakala perbezaan yang 
signifikan diperhatikan dalam 8 ciri morfometrik dan 31 rangkaian data truss masing-masing daripada 16 ciri 
morfometrik dan 35 rangkaian data truss. Di samping itu, analisis komponen utama (PCA) dan analisis fungsi 
diskriminasi (CVA) dilakukan dengan menggunakan morfometrik dan data rangkaian berasaskan truss. Hasil daripada 
PCA dan CVA menunjukkan populasi terpisah sepenuhnya serta membentuk kelompok yang padat dalam tahap intra-
populasi. Tiga dendrogram secara bebas berdasarkan hubungan fenotip antara individu daripada empat populasi 
dibina. Populasi NRJ, BBG dan DBJ membentuk populasi kumpulan masing-masing berdasarkan meristik, morfometrik 
dan truss morfometrik. Maklumat asas yang dihasilkan daripada kajian semasa adalah mudah untuk kajian genetik dan 
pemuliharaan populasi Nandus secara in situ di Bangladesh.

Kata kunci: Air tawar; analisis fungsi diskriminasi; meristik; morfometrik; morfometri Truss; nandus 
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INTRODUCTION

Phenotypic plasticity is the ability of an organism to adjust 
its body maintenance in response to genetic-environmental 
interactions. Sometimes, phenotypic plasticity, phenotypic 
responsiveness, flexibility, and condition sensitivity are 
entirely synonymous in evolutionary biology (West-
Eberhard 1989). The plethora of outcomes, such as changes 
in body shape and size, allometry, feeding habits, sexual 
dimorphism, and behavioral and physiological states, 
can be collectively or solely achieved from phenotypic 
plasticity after a certain period of time (Langerhans 
2008). Thus, similar to other organisms with this 
property, fishes are not an exception. Fishes also exhibit 
an outstanding extent of variation in their external body 
shape morphologies, such as meristic and morphometric 
characters, at a species level (Oufiero & Whitlow 2016). 
Consequently, morphometrics can be defined as an array of 
quantitative analyses, such as biological outline, or shape 
disparity among organisms with respect to environmental 
factors (Webster & Sheets 2010). Moreover, studies on 
the morphogenesis of fishes plays a fundamental role in 
evolutionary analysis and proper management (Başusta et 
al. 2014; Kalhoro et al. 2015). 

Information related to the stock structure analysis of 
a species or a population is a prerequisite of the expansion 
of proper biodiversity management and conservation 
(Turan et al. 2005). Morphological dissimilarities are 
observable characteristics in a fish or a fish population 
and caused by genetic factors, genetic-environmental 
interactions, and abiotic and biotic influences (Crispo 
2008; Silva et al. 2013). Generally, in early developmental 
stages, fishes express their phenotypic plasticity in two 
ways, that is, isometric size variation due to growth and 
allometric shape variation caused by developmental 
alteration (Cadrin 2000). Freshwater fishes exhibit a high 
degree of body shape variation because of physiological 
and environmental conditions, resulting in genetic 
variation and phenotypic plasticity (Eklöv & Svanbäck 
2005). Numerous techniques, such as morphometrics 
and meristics, traditional tags, otolith microchemistry, 
and electronic tags, have been extensively used for stock 
identification. Morphometric traits are one of the most 
used and cost-effective methods to detect intraspecific 
phenotypic variation in species (Mir et al. 2013). Naturally, 
fishes undergo ontogeny in an allometric pattern from the 
beginning of their life cycle (Hood & Heins 2000; Svanbäck 
& Eklöv 2002). To reinforce the inherent limitation of 
conventional morphometric approaches, the truss-networks 
formed by two or more interconnecting distances across-
body that ultimately produced chronological sequence 
of associated polygons has been progressively utilized 
(Strauss & Bookstein 1982).

Nandus is a freshwater fish commonly known as 
mud perch or mottled nandus and considered a small 
indigenous species in Bangladesh (Ross et al. 2003). This 
fish species is widely distributed in fresh and brackish 
waters, including ditches, ponds, beels (saucer-shaped 
perennial water bodies), and inundated fields throughout 
South Asian countries (Ahmed 2008; Rahman 2005). 
Nandus is a carnivorous organism that entirely feeds on 
larvae and insects, crustaceans, filamentous algae, and 
small fishes (Agarwal & Sharma 1966). Although this 
species is considered a bony fish that survives at a low 
oxygen level, it can camouflage when any prey, small fish, 
and even a predator is present in a water body (Mustafa 
et al. 1980). This fish also plays a substantial role in the 
overall nutrition for poor-rural-living and low-income-
generating communities in Bangladesh (Das & Zamal 
2000). According to IUCN-Bangladesh (Chowdhury 
2015), this species is categorized as nearly threatened 
because of habitat destruction, overexploitation, 
anthropogenic activities, and climate change (Rahman 
2005). As such, morphometric and meristic studies should 
be conducted to detect intraspecific phenotypic plasticity 
and ensure sustainability in the future.

At present, no adequate information regarding the 
intraspecific phenotypic variation in N. nandus in the 
freshwaters of Bangladesh is available. Therefore, this 
study aimed to investigate the intraspecific phenotypic 
variations in N. nandus based on meristic, morphometric, 
and truss network system.

MATERIALS AND METHODS

FISH SAMPLING

A total of 100 individuals of Nandus sp. were collected 
from four different freshwater sources in Bangladesh 
from September 2017 to November 2017: Arial Kha 
River, Madaripur (AKRM); Nabaganga River, Jhenaidah 
(NRJ); Bohnni Baor, Gopalganj (BBG); and Dhakuria 
Beel, Jashore (DBJ) (Figure 1 & Table 1). The samples 
were placed in an ice box and immediately brought into 
the Laboratory of Fish Biology and Aquaculture, Jashore 
University of Science and Technology, Bangladesh. The 
minimum and maximum total lengths (TL) of the fish 
specimens were 6.94 and 12.89 cm, respectively.

COUNTING OF MERISTIC CHARACTERS

In six meristic characters, the numbers of dorsal spiny 
fin rays (DSFR), dorsal soft fin rays (SFR), caudal fin rays 
(CFR), anal fin rays (AFR), pelvic fin rays (PevFR), and 
pectoral fin rays (PecFR) were counted in each sample by 
using magnifying glasses and needles. 
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TABLE 1. Sampling details of N. nandus from four freshwater sources in Bangladesh

Serial no. Populations Abbreviations Locations Number of 
specimens

Mean SL in
cm (SD)

1 Arial Kha River, Madaripur AKRM 23.23°N 90.18 °E 26 9.55 (0.54)

2 Nabaganga River, Jhenaidah NRJ 23.54°N 89.17 °E 22 7.76 (0.91)

3 Bohnni Baor, Gopalganj BBG 23.16◦N 89.21 °E 26 7.38 (1.26)

4 Dhakuria Beel,  Jashore DBJ 23.16◦N 89.21 °E 26 8.42 (1.19)

FIGURE 1. Map of Bangladesh showing collection sites of N. nandus 
from four freshwater sources

MEASUREMENT OF MORPHOMETRIC AND TRUSS 
NETWORKS

First, the image of the samples was digitized after the 
fish were thawed under running tap water, wiped well, 
and placed on a smooth platform with a white paper as a 

background. Then, the individual fish was categorized 
with a definite code for documentation. A Cybershot 
DSC-W730 digital camera (Sony, China) was used to 
capture digital images, which provided a whole record of 
body shape and allowed re-measurements when necessary 
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(Cadrin & Friedland 1999). The morphometrics and truss 
distances from the digital images of the specimens were 
extracted using tpsDig2V2.1 (Rohlf 2006; Table 2). In 
the case of truss network distances, 13 landmarks were 

created on each fish image, which was constructed by 
interconnecting 35 truss network measurements (Figure 
2). 

TABLE 2. Seventeen morphometric characters were used for the analysis intra/specific phenotypes of mottled N. nandus

Characters Description
Total length (TL) Distance from the tip of the lower jaw to the longest caudal fin ray
Standard length (SL) Distance from the tip of the lower jaw to the end of the vertebral column
Pre-dorsal length (PDL) Front of the lower lip to the origin of the first ray of the first dorsal fin
Post orbital head length (POL) Distance from the posterior margin of the eye to the end of the operculum
Pre-pectoral length (PPCL) Front of the lower lip to the origin of the pectoral fin
Pre-pelvic length (PPVL) Front of the lower lip to the origin of thwwe pelvic fin

Length of the first dorsal fin base (LDFB1) From base of first dorsal fin ray to base of last dorsal fin ray

Length of the second dorsal fin base (LDFB2) From base of the second dorsal fin ray to base of last dorsal fin ray
Length of anal fin base (LAFB) From base of the first anal fin ray to base of the last anal fin ray

Upper jaw length (UJL) Straight line measurement between the snout tip and posterior edge of maxilla

Lower jaw length (LJL)
Straight line measurement between the snout tip and posterior edge of 
mandible

Body depth (BD) Maximum depth measured from the base of the first dorsal fin ray
Snout length (SNL) The front of the upper lip to the fleshy anterior edge of the orbit
Eye diameter (ED) The greatest crystal-like diameter of the orbit

Head length (HD)
Distance between front of the lower lip to the posterior end of the opercular 
membrane

Depth of caudal peduncle (DCP) The least depth of the tail base
Inter orbital (IO) Distance between dorsal side of both eyes

FIGURE 2. Location of 13 anatomic landmarks of N. nandus for constructing 35 truss networks on fish body 
illustrated as close circle (black). The descriptions of landmarks are follows: (1) anterior tip of the upper snout, 

(2) forehead (end of the frontal bone), (3) origin of the first dorsal fin, (4) endpoint of the first dorsal fin, (5) 
origin of the second dorsal fin, (6) endpoint of the second dorsal fin, (7) dorsal origin of caudal fin, (8) ventral 
origin of the caudal fin, (9) endpoint of the anal fin, (10) origin of anal fin, (11) endpoint of the pelvic fin, (12) 

down of the operculum, and (13) anterior tip of the lower snout
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DATA ANALYSES

All original morphometric and truss data were subjected 
to general descriptive analysis to check their normality 
before they were further examined using SPSS version 21 
(SPSS, Chicago, IL, USA). An allometric formula, which 
was described by Elliott et al. (1995) and slightly 
modified in the present study, was used to remove the size 
effect from the dataset based on (1):

                                Madj = M (Ls / Lo)
b                                            (1)

where M is the original measurement; Madj is the size-
adjusted measurement; Lo is the TL of the fish; Ls is the 
overall mean of the TL of all the fish from all the samples; 
and b is estimated as the slope of the regression of logM 
on logLo by using all the fish samples in all the populations 
for each character from the observed data. Meristic, 
morphometric, and truss distance data were compared 
among populations via one-way ANOVA followed by 
post hoc (Tukey-HSD) test. Size-adjusted data were 
also subjected to principal component analysis (PCA) 
and discriminant function analysis (canonical variate 
analyses (CVA)). All statistically analyzed data were 
considered using a probability of P=0.05. Three separate 
dendrograms with a complete linkage and a Euclidean 
distance were drawn using meristic, morphometric, and 
truss morphometric data. The entire statistical analyses 
were performed using SPSS version 21 (SPSS, Chicago, 
IL, USA) and R version 3.5.2. 

RESULTS

Mean values were compared through one-way ANOVA 
followed by Tukey-HSD post hoc test of each meristic, 
morphometric, and truss morphometric character from four 
wild Nandus populations (Tables 3 to 5, respectively). In 
meristic characters, PecFR (F = 7.182, P < 0.05) of the BBG 

and DBJ populations were similar and NRJ population 
significantly differed from BBG and DBJ populations, 
while AKRM population was intermediate. The differences 
(P > 0.05) in DSFR (F = 1.558, P > 0.05), SFR (F = 2.335, 
P > 0.05), CFR (F = 0.765, P > 0.05), AFR (F = 1.058, P 
> 0.05), and PevFR (F = 1.058, P > 0.05) among the four 
populations were not statistically significant (Table 3). 

Eight morphometric characters (i.e., SL, PDL, PPVL,
LDFB1, LAFB, UJL, BD, and HL) also significantly varied 
(P < 0.05) among 16 morphometric characters (Table 
4). For instance, SL (F= 2.898, P < 0.05) of the AKRM 
and DBJ populations were highly significant to each 
other, whereas the BBG and NRJ populations were 
intermediate among the four populations. In case of PDL 
(F = 3.870, P < 0.05), the AKRM and BBG populations 
resembled similar and showed significant difference 
from DBJ population, conversely NRJ population was 
intermediate among the four populations. Similarly, for 
PPVL (F = 6.740, P < 0.05), DBJ population showed 
significant disparity compared to the three remaining 
populations of AKRM, BBG, and NRJ. Additionally, 
LDFB1 (F = 3.700, P < 0.05) character showed significant 
disparity between BBG and DBJ populations, whilst 
AKRM and NRJ populations exhibited intermediate among 
the four populations. Moreover, LAFB (F = 5.868, P < 
0.05) character of AKRM population possessed significant 
difference from BBG and DBJ populations while NRJ 
population exhibited as intermediate. The UJL (F = 6.220, 
P < 0.05) character of BBG and NRJ populations showed 
significant differences to each other, but AKRM and DBJ 
populations remained intermediate and equally similar to 
each other. Furthermore, the BD (F = 4.116, P < 0.05) and 
HL (F = 20.299, P < 0.05) characters showed significant 
differences in AKRM, BBG, and DBJ populations to each 
other even though the NRJ population showed intermediate. 

TABLE 3. Comparison of the (mean ± SD) of meristic characters of N. nandus in four populations namely, Arial Kha river, 
Madaripur (AKRM); Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in 

Bangladesh

Meristic characters AKRM BBG NRJ DBJ F P-value

DSFR 12.15 ± 1.12 12.44 ± 0.72 12.73 ± 0.72 12.48 ± 0.96 1.558 0.205

SFR 11.53 ± 1.10 10.72 ± 1.31 11.41 ± 1.00 11.40 ± 1.35 2.355 0.077

CFR 13.23 ± 0.71 13.28 ± 0.89 13.36 ± 1.04 13.60 ± 1.08 0.768 0.515

AFR 10.15 ± 1.43 9.68 ± 0.90 9.73 ± 1.42 10.16 ± 1.25 1.058 0.371

PevFR 6.62 ± 1.03 6.28 ± 0.89 7.23 ± 1.99 6.64 ± 0.95 2.230 0.090

PecFR 12.31 ± 1.15ab 11.36 ± 2.03b 13.13 ± 1.08a 11.48 ± 1.44b 7.182 0.000*

*P < 0.05 . SD: Standard deviation. F: The ratio of between-group variability and within group variability in one-way analysis of variance (ANOVA). Different small 
superscripts in each row differs the values of meristic characters
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TABLE 4. Comparison of the (mean ± SD) of morphometric characters of N. nandus in four populations namely, Arial Kha 
river, Madaripur (AKRM); Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in 

Bangladesh

Morphometric characters AKRM BBG NRJ DBJ F P-value
SL 8.19 ± 0.37b 8.31 ± 0.41ab 8.23 ± 0.23ab 8.44 ± 0.27a 2.898 0.039*

PDL 4.03 ± 0.27a 3.77 ± 0.21a 3.88 ± 0.37ab 3.68 ± 0.61b 3.870 0.012*

POL 2.21 ± 0.63 2.45 ± 0.71 2.26 ±0.57 2.56 ± 0.61 1.686 0.175
PPCL 3.32 ± 0.33 3.20 ± 0.25 3.34 ± 0.29 3.33 ± 0.34 1.178 0.322
PPVL 2.86 ± 0.28b 2.71 ± 0.48b 2.75 ± 0. 39b 3.18 ± 0.48a 6.740 0.000*

LDFB1 3.08 ± 0.34ab 2.88 ± 0.30b 3.07 ± 0.32ab 3.25 ± 0.57a 3.700 0.014*

LDFB2 0.72 ± 0.13 0.75 ± 0.16 0.77 ± 0.20 0.82 ± 0.17 0.166 0.919
LAFB 1.14 ± 0.11a 0.97 ± 0.18b 1.04 ± 0.22ab 0.94 ± 0.20b 5.868 0.001*

UJL 0.88 ± 0.23bc 0.82 ± 0.16c 1.15 ± 0.51a 1.13 ± 0.37ab 6.220 0.001*

LJL 0.85 ± 0.23 0.96 ± 0.26 1.01 ± 0.40 1.29 ± 0.56 1.546 0.208
BD 3.02 ± 0.15a 2.69 ± 0.21b 2.78 ± 0.42ab 2.64 ± 0.67b 4.116 0.009*

SNL 0.73 ± 0.16 0.64 ± 0.13 0.82 ± 0.49 0.68 ± 0.08 1.803 0.152
ED 0.69 ± 0.10 0.68 ± 0.24 0.66 ± 0.11 0.72 ± 0.13 0.688 0.588
HL 2.45 ± 0.45b 1.77 ± 0.73c 2.94 ± 0.85ab 3.13 ± 0.65a 20.299 0.000*

DCP 0.99 ± 0.09 1.06 ± 0.33 1.03 ± 0.08 1.08 ± 0.10 0.966 0.412
IO 1.16 ± 0.04 1.17 ± 0.03 1.19 ± 0.18 1.20 ± 0.09 0.671 0.572

* P < 0.05. SD: Standard deviation. F: The ratio of between-group variability and within group variability in one-way analysis of variance (ANOVA). Different small 
superscripts in each row differs the values of morphometric characters

In truss morphometric characters, out of 35 
morphometric characters 31 showed significant differences 
(Table 5). The characters 2-3 (F = 38.546, P < 0.05), 4-5 
(F = 18.408, P < 0.05), 7-8 (F = 20.082, P < 0.05), 8-9 (F 
= 12.050, P < 0.05), 9-10 (F = 20.139, P < 0.05), 11-12 
(F = 16.641, P < 0.05), 1-11 (F = 8.416, P < 0.05), 2-12 
(F = 7.675, P < 0.05), 3-12 (F = 28.377, P < 0.05), 3-11 
(F = 14.315, P < 0.05), 3-10 (F = 13.878, P < 0.05), 4-11 
(F = 7.415, P < 0.05), 6-9 (F = 3.614, P < 0.05), 2-9 (F = 
11.030, P < 0.05), and 1-9 (F = 31.212, P < 0.05) of the DBJ 
population demonstrated highly significant differences 
from those of the three remaining populations. In addition, 
10-11 (F = 8.567, P < 0.05) and 1-3 (F = 9.874, P < 0.05) 
characters of DBJ population significantly differed from 
the three remaining populations. Similarly, 5-6 (F = 
13.271, P < 0.05) character showed significant difference 
in NRJ population from the three remaining populations 
of AKRM, BBG, and DBJ. 

On the flip of site, 3-4 (F = 9.915, P < 0.05) character 
demonstrated significant differences in BBG and DBJ 
populations whereas AKRM and NRJ populations remained 
intermediate among the four populations. Similarly, 6-7 (F 
= 5.046, P < 0.05) character showed significant difference 
in NRJ population than the BBG and DBJ populations 
while AKRM population remained intermediate among 
the three remaining populations. Additionally, 2-11 (F = 

4.413, P < 0.05) character proved significant differences 
in BBG and DBJ populations than the NRJ population 
whereas AKRM population showed intermediate among 
the three remaining populations. Likewise, 2-10 (F = 
6.829, P < 0.05) character showed significant difference 
in AKRM and DBJ populations whilst BBG and NRJ 
populations showed intermediate among the three 
remaining populations. Correspondingly, 3-9 (F = 18.693, 
P < 0.05) character demonstrated significant difference in 
DBJ population than the NRJ and BBG populations but 
the AKRM population exhibited intermediate between 
BBG and NRJ populations. Together with, 4-10 (F = 
7.107, P < 0.05) character proved significant difference 
in BBG population than NRJ population while AKRM and 
DBJ populations remained intermediate between BBG 
and NRJ populations. Additionally, 6-11 (F = 4.641, P < 
0.05) character demonstrated significant difference in 
AKRM and DBJ populations but BBG and NRJ populations 
showed intermediate among the four populations. Equally, 
1-10 (F = 53.819, P < 0.05) character showed significant 
differences in DBJ, AKRM and BBG populations whilst 
NRJ population remained intermediate state among 
the populations. Furthermore, 7-11 (F = 13.271, P < 
0.05) character of DBJ population showed significant 
deviation than the BBG population while AKRM and NRJ 
populations showed intermediate among the populations. 
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TABLE 5. Comparison of the (mean ± SD) of truss morphometric characters of N. nandus in four populations namely, Arial Kha 
river, Madaripur (AKRM); Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in 

Bangladesh

Characters AKRM BBG NRJ DBJ F P-value
1-2 2.98 ± 0.33 3.08 ± 0.65 2.96 ± 0.71 3.26 ± 0.41 1.572 0.201
2-3 1.00 ± 0.38b 0.87 ± 0.19b 0.99 ± 0.17b 2.32 ± 1.00a 38.546 0.000*

3-4 2.56 ± 0.42bc 2.20 ± 1.00c 2.87 ± 0.54ab 3.34 ± 0.95a 9.915 0.000*

4-5 0.51 ± 0.21b 0.50 ± 0.17b 0.56 ± 0.46b 1.97 ± 1.50a 18.408 0.000*

5-6 0.59 ± 0.16b 0.55 ± 0.11b 0.78 ± 0.28a 0.45 ± 0.14b 13.271 0.000*

6-7 0.88 ± 0.08ab 0.79 ± 0.13b 0.93 ± 0.14a 0.79 ± 0.21b 5.046 0.003*

7-8 0.95 ± 0.06b 1.01 ± 0.14b 1.01 ± 0.14b 1.23 ± 0.17a 20.082 0.000*

8-9 0.93 ± 0.24b 0.87 ± 0.09b 1.05 ± 0.21b 1.26 ± 0.37a 12.050 0.000*

9-10 1.29 ± 0.57b 1.04 ± 0.36b 1.03 ± 0.31b 2.18 ± 0.94a 20.139 0.000*

10-11 2.18 ± 0.51a 2.38 ± 0.54a 2.23 ± 0.59a 1.69 ± 0.39b 8.567 0.000*

11-12 1.71 ± 0.51b 1.54 ± 0.22b 1.63 ± 0.38b 2.38 ± 0.67a 16.641 0.000*

12-1 2.13 ± 0.32 2.09 ± 0.18 1.96 ± 0.27 1.95 ± 0.62 1.364 0.264
12-13 2.46 ± 0.88a 2.18 ± 0.65ab 1.67 ± 0.74b 2.79 ± 1.06a 7.288 0.000*

1-3 3.84 ± 0.62a 3.84 ±0.33a 3.90 ± 0.61a 3.14 ± 0.71b 9.874 0.000*

1-11 3.61 ± 0.69b 3.34 ± 0.42b 3.36 ± 0.51b 4.08 ± 0.70a 8.416 0.000*

2-12 2.89 ± 0.22b 2.98 ± 0.57b 2.83 ± 0.45b 3.42 ± 0.58a 7.675 0.000*

2-11 3.07 ± 0.45ab 3.33 ± 0.79a 2.87 ± 0.41b 3.41 ± 0.54a 4.413 0.006*

2-10 4.19 ± 0.63a 3.75 ± 0.30bc 4.18 ± 0.60ab 3.59 ± 0.70c 6.829 0.000*

3-12 3.36 ± 0.35b 3.08 ± 0.24b 3.23 ± 0.34b 4.03 ± 0.57a 28.377 0.000*

3-11 3.00 ± 0.23b 3.10 ± 0.57b 3.12 ± 0.63b 3.81 ± 0.50a 14.315 0.000*

3-10 3.80 ± 0.18b 3.60 ± 0.33b 3.65 ± 0.65b 4.27 ± 0.41a 13.878 0.000*

3-9 3.92 ± 0.24bc 3.56 ± 0.33c 4.14 ± 0.47b 4.60 ± 0.81a 18.693 0.000*

4-11 3.78 ± 0.59b 3.58 ± 0.48b 3.55 ± 0.64b 4.34 ± 0.91a 7.415 0.000*

4-10 2.56 ± 0.41bc 3.28 ± 0.89a 2.54 ± 0.68c 3.07 ± 0.71ab 7.107 0.000*

4-9 2.39 ± 0.69b 1.60 ± 0.29a 2.04 ± 0.47b 2.37 ± 0.53b 13.511 0.000*

6-9 1.40 ± 0.37b 1.39 ± 0.17b 1.50 ± 0.36b 1.64 ± 0.32a 3.614 0.016*

6-8 1.39 ± 0.11 1.46 ± 0.18 1.46 ± 0.18 2.10 ± 0.54 1.388 0.251

7-9 1.47 ± 0.13b 2.24 ± 1.40a 1.71 ± 0.71ab 1.83 ± 0.78ab 3.410 0.021*

6-11 3.99 ± 0.33a 3.41 ± 0.63ab 3.62 ± 1.15ab 2.96 ± 1.51b 4.641 0.004*

6-10 2.23 ± 0.27 2.38 ± 1.15 2.30 ± 0.79 2.13 ± 1.16 0.371 0.774

2-9 4.83 ± 0.89b 4.76 ± 0.92b 4.35 ± 0.93b 5.95 ± 1.30a 11.030 0.000*

1-4 6.36 ± 0.78b 5.11 ± 0.72c 6.01 ± 0.91b 7.83 ± 1.27a 36.578 0.000*

1-10 6.13 ± 0.34b 5.31 ± 0.67c 5.86 ± 1.00ab 7.98 ± 1.03a 53.819 0.000*

1-9 6.99 ± 0.47b 5.92 ± 0.82c 6.78 ± 0.78b 8.22 ± 1.21a 31.212 0.000*

7-11 4.82 ± 0.35ab 4.61 ± 0.57b 4.74 ± 0.52ab 5.14 ± 0.72a 4.233 0.007*

* P< 0.05. SD: Standard deviation. F: The ratio of between-group variability and within group variability in one-way analysis of variance (ANOVA). Different small 
superscripts in each row differs the values of truss morphometric characters
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Multivariate analyses (i.e. PCA and CVA) were 
performed using meristic, morphometric, and truss 
morphometric data to detect the exact causes of variation 
in the specimens of the four populations. However, the 
insufficient sample size is a major bottleneck of the fish 
morphology studies during multivariate analysis. In this 
case, a ratio of sample size (N) among all specimens 
and the number of characters (F) of at least 2.8-3.5 was 
considered (Kocovsky et al. 2009; Parsons et al. 2003). 
Insignificant N values may fail to adequately capture co-
variance or morphological variation, possibly leading to 
false conclusions regarding changes among populations 
(McGarigal et al. 2000). However, in the present study, the 
total number of specimens was 100 (N), and the numbers 
of meristic, morphometric, and truss morphometric 
characters were 6 (P), 16 (P), and 35 (P), respectively. 
Through the use of N and P values, the ultimate ratios 
were 16.66 (N:P) for meristic parameters, 6.25 (N:P) 
for morphometric parameters, and 2.85 (N:P) for truss 
morphometric parameters, respectively. Consequently, 
PCA and CVA were performed to examine the characters 
(meristic, morphometric, and truss morphometrics) that 
mostly discriminated the populations. Before conducting 
the final PCA, data were validated with Bartlett’s test 
of sphericity, and the Kaiser–Meyer–Olkin (KMO) 
measurement was performed. The statistical range of the 
KMO values varied between 0 and 1. The KMO values 

were 0.526, 0.577, and 0.810 for meristic, morphometric, 
and truss morphometric characters, respectively, and 
Bartlett’s test of sphericity showed significant results (P 
< 0.05). According to Kaiser (1974), these KMO values 
can be ranked as moderate (0.5-0.7), good (0.7-0.8), and 
excellent (0.8-0.9). Therefore, the obtained results from 
KMO and Bartlett’s tests suggested that the extracted data 
from each sample were highly fit for the factor analysis 
of meristic, morphometric, and truss morphometric 
characters. 

In the PCA of six meristic characters, three factors 
with eigenvalues higher than 1 were extracted, and the 
remaining factors were discarded. The results elucidated 
62.79% of the total variance. The first, second, and third 
principal components (PC1, PC2, and PC3, respectively) 
described 25.8, 19.9, and 17.1% of the variance, 
respectively (Table 6). Among the three PCs, the most 
significant loadings on PC1 were AFR, DSFR, SFR, CFR, 
and PecFR (Table 6). CVA produced three canonical 
variations (CV; i.e., CV1, CV2, and CV3) for six meristic 
characters. CV1, CV2, and CV3 accounted for 72.2, 
18.6, and 9.2% of group variability, respectively (Table 
6). Pooled within-group correlations between canonical 
variables and CVs showed the following contributions of 
the six characters: PecFR to CV1, DSFR and SFR to CV2, 
and CFR and PevFR to CV3 (Table 6).

TABLE 6. Component loadings of first three principal components (PC) and canonical covariates (CV) for meristic characters in 
N. nandus collected from Arial Kha river, Madaripur (AKRM); Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) 

and Dhakuria beel, Jashore (DBJ) in Bangladesh. Character descriptions are given in material and methods section

PCA CVA

Meristic characters PC 1 PC 2 PC 3 CV 1 CV 2 CV 3

PecFR 0.415 0.561 0.439 0.742* -0.037 -0.189

DSFR 0.603 0.361 -0.043 0.116 -0.583* 0.390

SFR 0.527 -0.613 -0.261 0.271 0.535* 0.524

AFR 0.686 -0.347 -0.023 -0.024 0.500* 0.363

CFR 0.468 0.383 -0.362 -0.049 -0.061 0.663*

PevFR 0.209 -0.327 0.795 0.382 -0.142 0.408*

Eigenvalue 1.546 1.195 1.026 0.412 0.106 0.530

Variance % 25.8 19.9 17.1 72.2 18.6 9.2

Cumulative % 25.8 45.7 62.8 72.2 90.8 100.0

* Largest absolute correlation between each variable and any canonical variate function
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In the PCA of 16 morphometric characters, three 
factors with eigenvalues higher than 2 were extracted, 
and the remaining factors were discarded. These results 
elucidated 40.54% of the variance. PC1, PC2, and PC3 
accounted for 17.7, 13.4, and 9.44% of the distinction, 
respectively. Among the three PCs, the most significant 
loadings on PC1 were HL, BD, PPCL, PPVL, UJL, LDFB1, 
and ED (Table 7). CVA produced three CVs (CV1, CV2, 

and CV3) for 16 morphometric characters; that is, CV1, 
CV2, and CV3 accounted for 64.9, 25.5, and 9.6% of group 
variability, respectively (Table 7). Pooled within-group 
correlations between canonical variables and CVs showed 
the following contributions among 16 morphometric 
characters: HL, LJL, and LDFB2 to CV1; LAFB, BD, PDL, 
SNL, SL, POL, PPCL, and DCP to CV2; and PPVL, UJL, 
LDFB1, ED, and IO to CV3 (Table 7).

TABLE 7. Component loadings of first three principal components (PC) and canonical covariates (CV) for morphometric 
characters in N. nandus collected from Arial Kha river, Madaripur (AKRM); Bohnni baor, Gopalganj (BBG); Nabaganga 

river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in Bangladesh. Character descriptions are given Table 2

PCA CVA

Characters PC 1 PC 2 PC 3 CV 1 CV 2 CV 3

HL 0.598 0.010 -0.391 0.598* 0.501 0.009

LJL 0.225 0.464 -0.515 0.173* -0.113 -0.006

LDFB2 0.059 0.110 0.005 0.055* -0.041 -0.022

LAFB 0.337 -0.644 -0.078 0.188 0.069* 0.267

BD 0.579 -0.321 0.205 -0.161 0.360* 0.326

PDL 0.149 -0.758 0.136 -0.180 0.351* 0.207

SNL 0.017 -0.079 -0.268 0.025 0.287* -0.227

SL 0.326 0.361 0.511 0.188 -0.271* 0.085

POL 0.146 0.380 0.544 0.109 -0.257* 0.026

PPCL 0.724 -0.389 0.025 0.101 0.202* 0.040

DCP 0.164 0.288 -0.070 0.085 -0.186* -0.083

PPVL 0.668 0.293 0.151 0.329 -0.053 0.533*

UJL 0.458 0.380 -0.443 0.331 0.191 -0.332*

LDFB1 0.654 0.026 -0.097 0.251 0.147 0.281*

ED 0.423 0.143 0.333 0.073 -0.073 0.234*

IO 0.060 0.242 0.235 0.112 -0.009 -0.129*

Eigenvalue 2.829 2.144 1.513 1.389 0.544 0.205

Variance % 17.681 13.401 9.458 64.9 25.5 9.6

Cumulative % 17.681 31.082 40.540 64.9 90.4 100.0

* Largest absolute correlation between each variable and any discriminant function



2618	

In the PCA of 35 truss morphometric characters, three 
factors with eigenvalues greater than 2 were extracted, 
and the remaining factors were discarded. The results 
elucidated 56.80% of the variance. PC1, PC2, and e4q3 
described 35.8, 12.20, and 8.80% of the distinction, 
respectively (Table 8). The most noteworthy loadings on 
PC1 were 1-2, 2-3, 1-4, 1-9, 3-12, 9-10, 4-5, 11-12, 3-10, 
3-9, 2-9, 1-11, 8-9, 4-11, 2-12, 12-13, 7-11, 6-9, 3-4, 7-8, 
4-9, 4-10, 3-1, 2-11, and 1-2 (Table 8). CVA yielded three 
canonical variations (CV1, CV2, and CV3) in 35 truss 

morphometric characters. CV1, CV2, and CV3 accounted 
for 58.4, 27.6, and 14.0% of group variability (Table 
8). Pooled within-group correlations between canonical 
variables and CVs showed the following contributions 
among 35 truss morphometric characters: 22 characters 
(1-10, 2-3, 1-4, 1-9, 3-12, 9-10, 4-5, 11-12, 3-10, 3-9, 2-9, 
1-3, 1-11, 8-9, 10-11, 4-11, 2-12, 12-13, 7-11, 6-9, 6-8 and 
6-10) to CV1; 2 characters (5-6 and 3-4) to CV2; and 11 
characters (7-8, 4-9, 4-10, 2-10, 3-11, 6-11, 7-9, 6-7, 2-11, 
1-2 and 12-1) to CV3 (Table 8).

TABLE 8. Component loadings of first three principal components (PC) and canonical covariates (CV) 
for truss morphometric characters in N. nandus collected from Arial Kha river, Madaripur (AKRM); 

Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in 
Bangladesh. Character descriptions are given in material and methods section

PCA CVA

Characters PC 1 PC 2 PC 3 CV 1 CV 2 CV 3

1-10 0.829 -0.299 0.115 -0.464* 0.140 0.078
2-3 0.709 -0.425 -0.233 -0.383* 0.080 0.229
1-4 0.750 -0.384 0.248 -0.374* 0.165 -0.066
1-9 0.753 -0.394 0.319 -0.340* 0.177 -0.059
3-12 0.860 0.028 0.143 -0.339* 0.081 0.059
9-10 0.819 -0.137 -0.184 -0.288* 0.005 0.087
4-5 0.680 -0.331 -0.343 -0.258* 0.046 0.200
11-12 0.791 -0.127 -0.077 -0.258* 0.047 0.100
3-10 0.733 0.247 0.045 -0.240* 0.027 0.035
3-9 0.786 -0.184 0.359 -0.234* 0.223 0.046
2-9 0.731 0.197 -0.056 -0.205* -0.064 0.100
1-3 -0.461 0.574 0.243 0.192* 0.001 -0.136
1-11 0.690 -0.031 0.284 -0.188* 0.005 0.001
8-9 0.521 -0.032 0.088 -0.186* 0.157 0.133
10-11 -0.336 0.538 0.195 0.184* -0.061 -0.039
4-11 0.776 0.088 0.204 -0.176* -0.006 0.036
2-12 0.558 0.386 -0.141 -0.161* -0.034 0.156
12-13 0.542 0.130 -0.050 -0.151* -0.124 -0.044
7-11 0.719 0.364 0.203 -0.130* 0.043 -0.001
6-9 0.635 0.007 0.004 -0.099* 0.081 0.096
6-8 0.212 -0.082 -0.129 -0.068* 0.011 0.068
6-10 0.101 0.544 -0.286 0.037* -0.012 0.022
5-6 -0.237 0.300 0.289 0.169 0.231* -0.086
3-4 0.649 0.066 0.221 -0.164 0.173* 0.047
7-8 0.802 0.160 -.158 -0.242 0.052 0.321*

4-9 0.483 -0.282 0.354 -0.173 0.112 -0.297*

4-10 0.494 0.396 -0.206 -0.027 -0.160 0.267*

2-10 0.029 0.349 0.777 0.093 0.100 -0.254*

3-11 0.701 0.368 -0.263 -0.215 0.045 0.232*

6-11 -0.138 0.155 0.803 0.082 -0.001 -0.231*
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7-9 0.239 0.771 -0.372 0.030 -0.078 0.210*

6-7 0.126 0.399 0.499 0.059 0.153 -0.166*

2-11 0.579 0.553 -0.303 -0.077 -0.129 0.141*

1-2 0.488 0.556 -0.093 -0.066 -0.027 0.088*

12-1 -0.099 0.416 0.155 0.032 -0.080 -0.083*

Eigenvalue 12.531 4.259 3.088 7.439 3.516 1.780
Variance % 35.8% 12.2% 8.8% 58.4 27.6 14.0
Cumulative % 35.8% 47.9% 56.8% 58.4 86.0 100.0

*Largest absolute correlation between each variable and any discriminant function

The biplot arrangements, that is, PC1 versus PC2 
and CV1 versus CV2, of the meristic (Figure 3(a) and 
3(d)), morphometric (Figure 3(b) and 3(e)), and truss 
morphometric (Figure 3(c) and 3(f)) characters were 
constructed using PCA and CVA results, respectively. The 
biplot results of the meristic characters demonstrated four 
multivariate spaces with a significant overlap and unclear 
differentiation among the four populations (Figure 3(a) and 
3(d)). The biplot results of the morphometric characters 
exhibited four multivariate spaces with a high overlap 
among the four populations in PC1 versus PC2 (Figure 
3(b)) and a slight overlap in the result of CV1 versus CV2 
(Figure 3(e)). The biplot results of the truss morphometric 
characters displayed four multivariate spaces with a 
slight overlap in PC1 versus PC2 (Figure 3(c)), whereas 
distinct separation was observed in individuals from the 

four populations in CV1 versus CV2 (Figure 3(f)). Three 
dendrograms were constructed on the basis of the complete 
linkage and Euclidean distance to examine the phenotypic 
relationships independently among the individuals of the 
four populations. In the dendrogram, intermingling results 
were observed in the individuals in meristic characters, and 
the individuals of the NRJ population mainly contributed 
as the distinct population (Figure 4(a)). Similarly, 
individuals were also performed as intermixing stage by 
using morphometric characters, where BBG population 
mainly formed as distinct population (Figure 4(b)). 
Consequently, distinct outcomes were also demonstrated 
by the individuals in truss morphometric characters, and 
the DBJ population diverged as a unique distinct population 
(Figure 4(c)). 

 

D E F 
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FIGURE 3. (a-c) Principal component analysis, and (d-f) and canonical variate analysis of Nandus nandus obtained from meristic, 
morphometric, and truss morphometric characters, respectively. Fish samples collected from Arial Kha river, Madaripur (AKRM); 

Bohnni baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) and Dhakuria beel, Jashore (DBJ) in Bangladesh
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DISCUSSION AND CONCLUSION

Among all vertebrates fishes are one of the most 
susceptible organisms that pose high environmentally 
induced morphological dissimilarities. Hence, fishes 
exhibit maximum phenotypic plasticity among populations 
of other organisms, even though the same species occupy 
a single ecological niche (Allendorf 1987; Wimberger 
1992). However, our study disclosed the intraspecific 
phenotypic plasticity of Nandus in a large range from 
four freshwater ecological sources of Southwestern 
Bangladesh. Similarly, Goswami and Dasgupta (2007) 
studied meristic characters and observed that the average 
numbers of fin rays are in the range of 12-13 for DSFR, 
16 for PecFR, 15 for CFR, and 7-9 for AFR. Significant 
results have also been observed in N. oxyrhynchus from 
the Mekong Basin in Vietnam (Ng et al. 1996), N. prolixus 
from Northeastern Borneo in Indonesia (Chakrabarty et al. 
2006), and N. meni from the Noakhali Coast in Bangladesh 
(Hossain & Sarker 2013). The meristic characters used 
in this research (i.e. DSFR, CFR, AFR, PevFR, and PecFR) 

could be assigned to conjoined genetic bases and ecological 
variations that originated in topographical juxtaposition 
(Saborido-Rey & Nedreaas 2000; Walsh et al. 2001). 
Nevertheless, high deviations in PecFR may have been 
caused by the effect of environmental influences 
formed at the time of ontogenetic development through 
pre- or post-fecundation influence (Lindsey 1988). The 
discrepancy of PecFR may be ascribed to the nature of the 
number of fin rays, which are static in later stages than 
other meristic characters over ontogeny (Akbarzadeh et 
al. 2009). The difference in the number of rays of pectoral 
fins may be due to the temperature in their ecological 
niches and feeding modes (Kahilainen & Østbye 2006; 
Trabelsi 2002). Conversely, the consequences of individual 
polymorphism and quantitative genetics on meristic 
variations are not omitted. 

In the present study, the differences in morphometric 
and truss measurements were highly significant in post 
hoc tests among the four populations. Such a degree of 
phenotypic changes among the populations may be due 

FIGURE 4. Dendrogram with complete linkage and Euclidean distance of meristic, morphometric and truss 
morphometric data of Nandus nandus: (a) dendrogram derived from meristic data, (b) dendrogram derived 
from morphometric data, and (c) dendrogram derived from truss morphometric data. Fish samples collected 
from Arial Kha river, Madaripur (AKRM); Bohnni Baor, Gopalganj (BBG); Nabaganga river, Jhenidah (NRJ) 

and Dhakuria Beel, Jashore (DBJ) in Bangladesh

 B A C 
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to their distinct geographical site, current environmental 
dissimilarity of the four ecological niches, or different 
descendants. Generally, fishes and aquatic organisms exhibit 
high sensitivity to environmental changes and rapidly alter 
their body shapes with respect to their new environmental 
conditions for proper adaptation. Phenotypic characters 
can exhibit high plasticity because of the fluctuation of 
environmental conditions, such as several abiotic (e.g. 
temperature, water quality parameters, and climate change) 
and biotic (e.g. food abundance, host–pathogen–parasite 
interaction) factors (Allendorf & Phelps 1988; Solomon 
et al. 2015; Wimberger 1992;). Usually, fishes are highly 
vulnerable because of environment-induced morphological 
variations in comparison with other vertebrate within 
intra- and interpopulation levels (Allendorf et al. 1987; 
Wimberger 1992). However, describing the cause of 
the morphological changes between/among populations 
(Cadrin 2000) is difficult when certain observed variances 
are due to growth differences, mortality, and reproduction 
rates (Silva et al. 2013). The phenotypic plasticity 
of fish is high because they adapt their physiological 
characteristics and behavior to environmental changes, 
and such adaptations eventually alter their morphological 
traits (Stearns 1983). Morphological alterations in aquatic 
vertebrates with minimal environmental differences may 
be difficult to distinguish by studying gross morphometric 
and meristic characters only. Therefore, truss network 
dimensions were included in this trial. Turan et al. (2004) 
indicated that truss network systems are dominant tools 
in fish stock identification and stock delineation. In the 
present research, the truss network system might be 
efficiently used to differentiate the four populations. 
Highly significant variations were anticipated because 
of four entirely different ecological niches (i.e. the two 
rivers are open water habitats, and the two beels are 
closed water habitats). Ecologically or environmentally 
persuaded phenotypic discrepancies may be beneficial to 
the investigation of the stock structure of exploited species, 
particularly during a short time frame (Gain et al. 2017; 
Hossain et al. 2010; Mahfuj et al. 2017; Simon et al. 2010). 

Phenotypic differentiation in the four populations 
showed strong overlap according to PCA and CVA 
results. Morphometric and truss morphometric characters 
usually play a significant role in the creation of stock 
discrimination rather as compared to meristic characters. 
However, in this study, the four wild population could not 
be separated into individually distinct multivariate spaces 
judging from the observation of overlap in PCA and the 
dendrogram with complete linkage. This is contrary to the 
findings of Okomoda et al. (2018a, 2018b) who reported 
that the pure and reciprocal crosses Clarias gariepinus 
and Pangasianodon hypophthalmus can be discriminated 
using morphological data. This also not in tandem with 
the finding of Hossain et al. (2010) with Labeo calbasu. 
Mahfuj et al. (2019a, 2019b, 2019c) detected similar 

results in Macrognathus pancalus, Xenentodon cancila, 
and Lepidocephalichthys guntea, respectively. The 
divergent of wild group based on morphological data has 
been hypothesized to be formed due to environmental and 
genetic factors (Allendorf & Phelps 1988; Nakamura et 
al. 2003; Okomoda et al. 2018; Solomon et al. 2015). The 
finding of this study may just attest to similarity of origin 
of the different wild populations understudied.

The finding of this study are highly useful as a basis 
for conducting further studies on Nandus populations. 
For aquaculture and open-water fishery management, 
the information obtained in this study may be helpful 
in sorting out superior populations after further studies 
are performed. More so, further studies, such as genetic 
research and analysis on the influences of environmental 
dynamics, are required for the in situ and ex-situ 
conservation and artificial seed propagation of certain 
populaces to protect and save this nearly threatened species 
from extinction.
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