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Defaultable Bond Pricing under the Jump Diffusion Model with Copula Dependence 
Structure 

(Penentuan Harga Bon Boleh Mungkir di Bawah Model Resapan Lompat dengan Struktur Kebersandaran Kopula)

Siti Norafidah Mohd Ramli* & Jiwook Jang

ABSTRact

We study the pricing of a defaultable bond under various dependence structure captured by copulas. For that purpose, 
we use a bivariate jump-diffusion process to represent a bond issuer’s default intensity and the market short rate of 
interest. We assume that each jump of both variables occur simultaneously, and that their sizes are dependent. For these 
simultaneous jumps and their sizes, a homogeneous Poisson process and three copulas, which are a Farlie-Gumbel-
Morgenstern copula, a Gaussian copula, and a Student t-copula are used, respectively. We use the joint Laplace transform 
of the integrated risk processes to obtain the expression of the defaultable bond price with copula-dependent jump sizes. 
Assuming exponential marginal distributions, we compute the zero coupon defaultable bond prices and their yields using 
the three copulas to illustrate the bond. We found that the bond price values are the lowest under the Student-t copula, 
suggesting that a dependence structure under the Student-t copula could be a suitable candidate to depict a riskier 
environment. Additionally, the hypothetical term structure of interest rates under the risky environment are also upward 
sloping, albeit with yields greater than 100%, reflecting a higher compensation required by investors to lend funds for 
a longer period when the financial market is volatile.

Keywords: Bivariate jump-diffusion model; credit risk; default intensity; short rate; zero coupon bond

ABSTRAk

Kertas ini mengkaji penentuan harga bon boleh mungkir dengan kadar faedah pendek dan nilai keamatan ingkar 
penerbit bon, dengan struktur kebersandaran yang diwakili oleh kopula. Untuk tujuan itu, proses resapan-lompat 
bivariat digunakan untuk mewakili proses keamatan ingkar penerbit bon dan kadar faedah pendek pasaran. Setiap 
lompatan oleh kedua-dua pemboleh ubah diandaikan berlaku serentak, dan saiznya adalah bersandaran antara satu 
sama lain. Bagi mewakili proses lompatan serentak dan struktur kebersandaran saiznya, proses Poisson yang homogen 
dan tiga kopula, iaitu kopula Farlie-Gumbel-Morgenstern, Gaussian, dan student-t digunakan. Transformasi Laplace 
tercantum bagi proses risiko bersepadu digunakan untuk mendapatkan persamaan harga bon boleh mungkir dengan 
saiz lompatan faktor yang bersandar dengan struktur kopula. Harga bon boleh mungkir tanpa kupon dan kadar 
hasilnya dihitung di bawah tiga jenis kopula dengan taburan marginal eksponen untuk mewakili kebersandaran antara 
kedua-dua faktor. Kajian mendapati bahawa nilai harga bon adalah yang paling rendah apabila faktor kebersandaran 
digambarkan oleh kopula student-t, yang menunjukkan bahawa struktur kebersandaran di bawah kopula student-t 
adalah lebih sesuai untuk menggambarkan persekitaran yang berisiko berbanding kopula FGM dan Gaussian. Di 
samping itu, walaupun struktur masa kadar faedah bagi jangka panjang di bawah persekitaran yang berisiko juga 
menunjukkan pola menaik, kadar hasil yang melebihi 100%, mencerminkan situasi bahawa pelabur memerlukan 
pampasan yang lebih tinggi bagi aktiviti meminjamkan dana untuk tempoh yang lebih lama apabila situasi pasaran 
kewangan adalah tidak menentu.

Kata kunci: Bon sifar kupon; kadar keamatan mungkir; kadar pendek; model resapan-lompat bivariat; risiko kredit

introduction

After a decade since the 2008 Global Financial Crisis 
(GFC), the overall measures of US household financial 
wellness show that many households remain vulnerable 
with increasing auto loan, student debts as well as credit 
card debt although the household debt to GDP ratio has 
reduced by 19%. An extended period of low interest 
rates has also witnessed global nonfinancial corporate 
debt doubled, hitting $66 trillion for the past 10 years. 

Furthermore, the global public debt has soared to $60 
trillion, at an average of 105% of GDP among the advanced 
economies and 46% among the emerging economies (Lund 
et al. 2018). Therefore, it is necessary to develop prudent 
quantitative models for corporate bonds pricing given the 
extent of the interest rate risk exposure to the economic 
agents, despite the allegations that mathematical models 
were the reason for the losses borne during the GFC 
(Donelly & Embrechts 2010; Salmon 2009; Stewart 2012).
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The two classes of models in credit risk evaluation 
for corporate debt pricing are the structural model and 
the reduced form model. Under the structural approach, 
a firm’s liabilities are viewed as contingent claims 
issued against its assets, with all the payoffs to the firm’s 
liabilities in bankruptcy completely specified (Black & 
Cox 1976; Merton 1974). In other words, bankruptcy is 
viewed as the event when the firm’s asset value hits a pre-
specified boundary. The view undertaken in this class of 
models was then ameliorated in Hull and White (1995) 
as well as Longstaff and Schwartz (1995), whereby the 
cash flows to risky debt were exogenously specified as 
a given fraction of each promised dollar in the event 
of bankruptcy. This perspective would be useful when 
considering the complex priority structure of payoffs 
made to a firm’s liabilities. Ruf and Scherer (2011) then 
computed the bond prices following a structural default 
model with jumps using Monte Carlo simulation based 
on a Brownian bridge algorithm. 

Rather than examining the firm’s internal structure 
whose complete information is not available to the 
external parties as in the structural approach, we work 
under the reduced form approach which requires a 
different set of information that is less refined. We refer 
the readers to Jarrow and Protter (2004) for a thorough 
discussion on the comparison between the structural 
and the reduced form models. Under the reduced form 
approach, we observe the information generated by a 
vector of state variables and the firm’s default time. 
The firm’s default time was generated by a Cox process 
with an intensity process that also depends on the state 
variables. Lando (1998) prepared a convenient framework 
that allows for dependencies between default intensities 
and state variables, whereby the Cox process was used to 
model the (stopping) time when the rating changed until 
the issuer went default in the last state of a generalized 
K-states Markovian model. In one of the earliest papers 
to promote the term ‘reduced-form’ approach, Duffie and 
Singleton (1999) treated default as an unpredictable event 
governed by the external hazard rate process. A contingent 
claim that is subject to default risk can be priced just 
like the default-free claim simply by replacing the short 
rate with the default-adjusted short rate process under 
an equivalent martingale measure in an arbitrage free 
framework. This approach was then extended in Kijima 
(2000) which considered the possibility of default-event 
triggers that cause joint default, and in Jarrow and Yu 
(2001) which introduced the concept of counterparty risk 
to capture the economy-wide and inter-firm linkages. 

Previous studies of the reduced form approach 
have taken several directions in researchers’ attempts 
to incorporate default correlation and multiple defaults 
(Brigo & Chourdakis 2009; Herbertsson et al. 2011; 
Jang 2007; Ma & Kim 2010). The reduced form 
model promoted in Jarrow and Turnbull (1995) was 
further developed in Jarrow et al. (1997), whereby the 
bankruptcy process was modelled as a continuous time 
Markov process with discrete state space representing 

the firm’s credit ratings. By combining the structural and 
the reduced form approaches, the authors specified the 
credit event exogenously and allowed the bankruptcy 
assumptions to be imposed only on observables (i.e. the 
firm’s credit ratings) as opposed to the firm’s asset values. 
Another hybrid example can also be found in Hyong-
Chol and Ning (2005), which assumed an expected and 
unexpected default following stochastic default intensity 
and provided an explicit pricing formula for defaultable 
bond and credit default swap (CDS). 

Another approach to incorporate default 
dependence between related parties is through the 
use of copulas (Giesecke 2004; Jouanin et al. 2001; 
Li 2000; Schonbucher & Schubert 2001). The use of 
Farlie-Gumbel-Mogenstern (FGM) copula to price a CDS 
using the multivariate shot noise process was studied in 
Ma and Kim (2010) and extended by Mohd Ramli and 
Jang (2015) by adding a diffusion term on the shot noise 
process making it a multivariate jump-diffusion process. 
A study by Jang and Mohd Ramli (2018) applied the joint 
survival probability expression to examine the effect of 
the jump-diffusion process on a social benefit scheme 
consisting of life insurance, as well as unemployment/
disability and retirement benefits. Hence in this paper, we 
propose the jump diffusion process to represent the risky 
environment of a financial market via the short interest 
rate and the bond issuer’s default intensity. Due to the 
strong evidence that the default intensity varying with 
the business cycle (Kijima 2000), we aim to examine 
the bond price behaviour under the risky environment 
represented by the jump diffusion process using three 
types of two-tailed copula, which also allows flexibility 
in modelling the variables and its combined effect.

The remaining of the paper is organized as follows: 
Next section defines the bivariate jump-diffusion process 
for short rate and firm’s default intensity, and the three 
copulas used to capture the dependence between the 
jump sizes of the variables, i.e. the FGM, Gaussian and 
student’s t-copula. The expression of the bond price 
obtained from the results in Mohd Ramli and Jang (2015) 
was also presented. This is then followed by a numerical 
example in subeseqent section showing the computation 
and the comparison of bond prices and their yields under 
the three copulas, showcasing the advantage of the 
Student-t copula over the other two copulas considered. 
Final section concludes the paper.

methods

This section describes the quantitative model used to 
represent the important variables used in the defaultable 
bond pricing, and the three copulas used to illustrate the 
dependence structure. 

bivariate jump diffusion model

For i = 1 (bond issuer’s default intensity) and i = 2 (short 
rate), the jump-diffusion Cox-Ingersoll-Ross (CIR) process 
considered has the following structure:
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with                                                   (1) 

where c(i)b(i) represents the long-term mean level of the 
short rate or default intensity; c(i)a(i) represents the drift 

driven back to its long-term mean, with c(i)a(i)<0; σ(i) is the 
W(i)(t) is a standard Brownian 

motion governing the process. 
W L(i)(t) as a pure jump process in which 

M(i)(t) is the number of jumps, representing the total 
number of events up to time t and Yh

(i), h = 1, 2, ∙∙∙, M(i)

(t) is their sizes. The point process M(i)(t) with average 
ρ(i) is independent of the vector sequence of jump sizes. 
The jump occurrences are assumed to be simultaneous 
for both processes and that their sizes are independent 
and identically distributed (i.i.d.) with distribution 
function F(i)(y). The process needs to satisfy the usual 
f eller condition given by                $ to ensure λ(i) 

(t) > 0. Note that, by setting ρ(i) 

process becomes the celebrated Cox-ingersoll-Ross (CiR) 
process (Cox et al. 1985), while setting σ(i) = 0 gives us 
the shot noise process (Jang 2007; Ma & Kim 2010). The 

a risky economic environment, relative to the CiR model 
(1985) and the shot noise processes.

Defaultable Bond Price Expression

Using the multivariate joint Laplace transform proposed 
in Mohd Ramli and Jang (2015), we obtain the expression 
for a defaultable bond price,                       ,whereby 
the ds denotes the default rate of the issuer and rs denotes 
the interest rates. The joint Laplace transform is useful to 
compute the survival probability of an insured life given 
an insurance contract, as well as the bond price. 

As there are two variables involved, we let n = 2 
whereby i =1 is the obligor’s default intensity and i = 2 is 
the market short rate. f its 
cumulative hazard process, Λ(i)(t) = λ (i) (s) ds, which is the 
sum of risks related to the process i that we encounter 
from time 0 to t. a s proposed and proven in Corollary 
2 of Mohd Ramli and Jang (2015), the joint Laplace 
transform up to time t σ 
{( λ (1) (s), λ(2) (s)):s ≤ t}  is given by the following 
proposition:
Proposition 1 Considering constants α(i)  ≥ 0 and γ(i) ≥  0 
for i = 1, 2, the joint Laplace transform of the vector 
(Λ(1)(t), Λ(2) (t), λ(1) (t), λ(2) (t)) is given by 
 
 

       
    
                                                                   

                                                                       (2)

where t > 0, with

g (i)(t) = α(i)[(D(i) + c(i) a(i)) + D(i) - c(i)a(i) exp {-D(i)t}] +
             σ(i)(2) α(i)(1 - exp {- D(i)t}) + (D(i) - c(i) a(i)) +

 2γ(i) (1- exp{ - D(i)t})
 (D(i) + c(i) a(i)) exp{- D (i)t}

H(i)(t) = 
 σ        α(i)(1 - exp {- D(i)t}) + (D(i) - c(i) a(i)) + 
              (D(i) + c(i) a(i)) exp {- D(i) t}’

and

Note that the bivariate joint Laplace transform contains 
a random element given by the term               , which 
incorporates the jump-size distribution and the 
dependence structure between the jump sizes of the 
variables. Setting α(i) = 0 in (2), we obtain the bond price 
expression, as presented in the following proposition:

Proposition 2 The joint Laplace transform of the vector  
(Λ(1) (t), Λ (2)(t)) is given by  
 
 

                                                                            

                                                                           (3)

where t > 0, with 

w ,

w ,
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The expression for a default free bond price can be 
obtained easily by substituting γ(1) = 0 and γ(2) = 1 in (3). 
Furthermore, if we set ρ = 0 in (3), we have the bond 
price expression under the celebrated Cox-ingersoll-Ross 
(1985) model in Cox et al. (1985). Due to the dependence 
of simultaneous event jumps of Y(i)’s with sharing event 
jump frequency rate ρ, we have that 

However, if the event jump Y(i) for i = 1, 2 occurs by a 
Poisson process Mt

(i) with its frequencyrate ρ respectively 
and everything else is independent of each other, the 
expression of the defaultable bond price is simply the 
product of the bond issuer’s survival probability and the 
discount factor.

 COPULA

The importance of introducing the correlation aspect 
between default intensity and interest rates was mentioned 
in n otes 8 of Kijima (2000) due to the strong evidence 
that the default intensity of corporate bonds varies with 
the business cycle. For that purpose, a copula function 
is an excellent candidate as it allows each variable being 

Other 
than bond pricing, copulas have also been applied widely 
in capturing the dependence structure embedded in 

indices (ignatieva & Platen 2010; Ma & Kim 2010; Mohd 
Ramli & Jang 2014; Shamiri et al. 2011).

The source of dependency between the variables 
λ(1)(t) and λ(2)(t) is the common event arrival process 
Mt, together with the dependence between the vector 
of jumps (Yj

(1), Yj
(2)). We assume that the event arrival 

process Mt, i.e. the simultaneous jump process, follows 
a homogeneous Poisson process with frequency ρ and 
the vector of jumps is modelled using copulas. in other 
words, the joint distribution of the vector (Yj

(1), Yj
(2)) is 

assumed to be of the form C(F(1),F(2)) with C being a 
given copula. The cumulative distribution function of the 
fg M, the g aussian and the Student-t copulas are given 
by the following in a consecutive manner:

    (4)

                  (5)

                              

                                                                      

                                                                           (6)

where ui  [0,1]  for i = 1, 2, and the correlation parameter 
θ  [-1, 1] . For the g aussian and student-t copulas, the 
correlation parameter is contained in the correlation 
matrix Θ =            W ω = [ω1 ω2]

 

and η = [η1 η2]
     where ωi = Φ-1(ui) and ηi = tv

-1 (ui) are the 
inverse g aussian and inverse Student-t distribution with 
degrees of freedom , respectively, taken on the variables ui. 
While any distribution can be considered for the marginal 
distributions of Y(i)

j in the vector of jumps (Y(1)
j, Y

(2)
j), 

only the continuous marginals will ensure a uniquely 

nelsen  (2006), and Shamiri et al. (2011) for example). In 
this study, the jump size variables are assumed to follow 
the exponential marginal for simplicity of illustration.

The FGM copula is used in this study for its simplicity 
and analytical tractability which allows for the closed-
form expressions to be easily derived. However, due to 
the weak dependence structure under the FGM copula, 
we propose to examine the bond price and yield under 
another two sided copulas, i.e. copula with dependence 
structure θ  [-1, 1], which are the g aussian and the 
Student-t copulas. The g aussian copula was commonly 
used prior to the GFC 2008, while the Student-t copula 
is chosen as a potential candidate to represent the risky 
environment. In other words, the Student-t copula was 
chosen to incorporate the impact of higher frequency 
of concurring and opposing joint jump sizes, given 
its ability to capture variables with extreme values. 
Readers are referred to Mohd Ramli and Jang (2015) 
for the graphical illustrations of the three copulas when 
applied to two simulated processes. However, since the 
elliptical copulas do not admit analytical expression 
when combined with the chosen marginals, we evaluate 
the bond price numerically.

RESULTS AND DISCUSSION

Now we examine the behaviour of the defaultable zero 
coupon bond prices under three different copulas 
mentioned in Methods section. The hypothetical 
defaultable bond pays redemption value $100 at 
maturity. f or simplicity, we assume that the jump sizes 
of both the bond issuer’s default intensity (i = 1) and the 
market short rate (i = 2) are exponentially distributed. 
The defaultable bond price values Pt are computed using 
(7), and the bond yield dt is obtained using the following 
formula:

 

(8)

We examine two scenarios whereby the exponential 
jump size parameters, (µ(1), µ(2)) are assigned the values 

. T

T
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(µt
(1) = 100, µt

(2) = 200) and (µt
(1) = 5, µt

(2) = 10). The first 
set of parameters represents a safer environment due 
to low average jump sizes (     and     respectively), 
while the second set denotes a relatively riskier 
environment with relatively higher average jump sizes 
(    and    , respectively). We assume an average of 4 
jump occurrences per year (i.e. ρ = 4) and that the long 
term mean value for the issuer’s default intensity and 
the market short rate = 0. Furthermore, to represent the 
relatively secure nature of a financial market relative to 
an issuer, we also assume that c(1) < c(2) (i.e. the market 
short rate process reverts to its long term mean quicker 
than the default intensity process) and σ(1) > σ(2) (i.e. 
default intensity process is more volatile than the market 
short rate process). The value of other parameters are 
summarized in Table 1. The degrees of freedom υ=3 

are used to compute the bond price under the Student-t 
copula with one-year maturity. The bond price values for 
maturity > 1 year can be found in the Appendix section.

table 1. Parameter values of bond issuer’s default intensity 
and short rate

c(i) α (i) b(i) σ(i) ρ(i) λ0
(i)

Issuer (1) 3 -1 0 0.5 4 0.5

Short rate 0.5 -1 0 0.4 4 0.0025

Table 2 exhibits the bond price for each scenario with 
the corresponding yield in Table 3. The term ‘Range’ in 
Table 2 denotes the difference between the bond prices 
given by θ0.95 and θ−0.95, i.e. Priceθ=−0.95 − Priceθ=+0.95.

�
�tt

�
�tt

Table 2. Zero coupon bond price under various copulas for t = 1

µt
(1) = 100 and µt

(2) = 200 µt
(1) = 5, µt

(2) = 10
θ FGM Gaussian Student-t FGM Gaussian Student-t

-0.95 92.627 92.529 89.424 57.797 57.359 51.019

-0.9 92.627 92.530 89.564 57.810 57.387 51.030

-0.5 92.627 92.626 89.578 57.910 57.669 51.275

0 92.628 92.628 90.002 58.036 58.036 51.867

0.5 92.629 92.631 90.030 58.163 58.470 52.791

0.9 92.629 92.633 90.121 58.264 58.866 53.883

0.95 92.629 92.634 90.151 58.277 58.870 54.065

Range -0.2% -0.105 -0.727 -0.48 -1.511 -3.046

We see that as θ progressed from negative to 
positive, the bond price figures in Table 2 demonstrate 
an increasing pattern while the bond yield figure in 
Table 3 shows a decreasing pattern under all copulas 
considered. In practice, the ‘high yield, low price’ pattern 
is usually seen when examining the price behaviour of a 
bond with high risk, implying that higher compensation 

is required to invest for a long period when the market 
is uncertain. In comparison with the other two copulas, 
the bond price values are the lowest under the Student-t 
copula, suggesting that a dependence structure under the 
Student-t copula could be a good candidate to depict a 
riskier environment.

Table 3. Zero coupon bond price under various copulas for t = 1

µt
(1) = 100 and µt

(2) = 200 µt
(1) = 5, µt

(2) = 10
θ FGM Gaussian Student-t FGM Gaussian Student-t

-0.95 7.960% 8.074% 11.827% 73.019% 74.340% 96.006%

-0.9 7.960% 8.074% 11.652% 72.982% 74.255% 95.963%
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-0.5 7.960% 7.961% 11.635% 72.681% 73.405% 95.028%

0 7.959% 7.959% 11.109% 72.306% 72.306% 92.802%

0.5 7.958% 7.956% 11.074% 71.931% 71.029% 89.425%

0.9 7.957% 7.953% 10.962% 71.632% 69.880% 85.587%

0.95 7.957% 7.952% 10.925% 71.595% 69.866% 84.961%

Analogously, the bond yields are highest under the 
Student-t copula and lowest under the FGM copula. 
Additionally, the yield under Gaussian copula differs by 
less than ±0.15% than the FGM counterpart, when the 
environment is relatively safe. When comparing the bond 
yield across θ for both scenarios, we also noticed that the 
yields for the case of (µt

(1) = 5, µt
(2) = 10) are much higher 

than the yields given by the case of (µt
(1) =100, µt

(2) =200) 
for all copulas considered, i.e. by almost 10 times higher. 
This is not surprising as lower exponentially distributed 

jump size parameters indicate a higher average jump size, 
thereby indicating a relatively risky market environment. 

It is also worth noting that the bond price and yield 
under the Student-t copula is not equal to the bond prices 
and yields as the Gaussian and FGM copula when θ = 0. 
In contrast to the general theorem of copula, the Student-t 
copula does not give an independence case when the 
dependence parameter θ = 0, and hence it would not 
result in product copula (Schmidt 2006).

Figures 1 and 2 show the bond price and bond yield 
under the jump-diffusion process with the dependence 
structure captured by the Student-t copula as a function 
of maturity (T−t) (on the x-axis) and θ (on the y-axis). 
Under both scenarios of (µt

(1) = 100, µt
(2) = 200) and 

(µt
(1) = 5, µt

(2) = 10), the bond price decreased and yield 
increased as maturity increased reflecting the riskiness of 

figure 1. Bond price as a function of θ and maturity under the jump-diffusion model with Student-t copula 
dependence structure and jump sizes (µt

(1) = 100, µt
(2) = 200) (left) and (µt

(1) = 5, µt
(2) = 10) (right)

the instrument in the long run which commands higher 
return for funds kept for a long period up to 10 years. 
Additionally, in the risky market environment i.e. when 
the (µt

(1) = 5, µt
(2) = 10), the bond is almost worthless as 

the term to maturity goes beyond 5 years. The bond price 
and bond yield under the Gaussian and the FGM copula 
show a similar pattern (see Appendix).
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conclusion

This paper examined defaultable bond prices under the 
bivariate jump-diffusion model, whose jump sizes are 
dependent. The variables were the default intensity of a 
bond issuer and the short rate of interest, with exponentially 
distributed jump sizes and the dependence structure being 
captured by three copulas. The results indicated that the 
bond price under the Student-t copula showed the highest 
yield and had the widest range between both ends of the 
dependence parameters θ, suggesting that it is a better 
candidate to represent a risky environment relative to the 
other two copulas. We also found that in comparison to the 
relatively safe environment, the bond yield values under 
the risky environment are very high, i.e. above 100%, as 
the bond tenure increase up to 10 years, although both 
environments have an upward sloping term structure. It 
would be of interest to calibrate the model to the real bond 
data issued by a corporation to examine the dependency 
between its defaultability and short rate of interest, which 
we leave for further research.
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A1: BOND PRICE AND YIELD AS A FUNCTION OF TENOR AND θ WITH Y ∼ Exp(100,200)

Appendix 1. Prices of zero coupon bond under jump diffusion model with student-t copula dependence structure for years to 

maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 89.424 75.583 61.109 47.708 36.232 26.924 19.668 14.172 10.103 7.134

-0.9 89.564 75.799 61.338 47.906 36.38 27.023 19.724 14.197 10.108 7.142

-0.5 89.578 75.880 61.524 48.201 36.758 27.443 20.149 14.599 10.446 7.391

0 90.002 76.521 62.185 48.758 37.161 27.693 20.273 14.6340 10.469 7.445

0.5 90.030 76.678 62.410 48.983 37.366 27.870 20.420 14.751 10.538 7.461

0.9 90.121 76.713 62.55 49.336 37.900 28.520 21.114 15.433 11.167 8.016

0.95 90.151 76.885 62.805 49.609 38.168 28.767 21.333 15.620 11.322 8.1418
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Appendix 2. Prices of zero coupon bond under jump diffusion model with Gaussian copula dependence structure for years to 

maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 92.529 82.015 70.281 58.598 47.798 38.312 30.283 23.673 18.343 14.114

-0.9 92.530 82.016 70.284 58.602 47.803 38.318 30.290 23.680 18.350 14.121

-0.5 92.626 82.157 70.518 58.933 48.148 38.657 30.609 23.971 18.609 14.346

0 92.628 82.243 70.577 58.934 48.216 38.745 30.708 24.073 18.710 14.441

0.5 92.631 82.255 70.608 58.986 48.221 38.787 30.788 24.180 18.831 14.558

0.9 92.633 82.270 70.645 59.050 48.310 38.854 30.828 24.199 18.833 14.568

0.95 92.634 82.284 70.680 59.110 48.394 38.956 30.942 24.316 18.949 14.668

Appendix 3. Prices of zero coupon bond under jump diffusion model with FGM copula dependence structure for years to maturity 

1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 92.627 82.332 70.805 59.332 48.714 39.358 31.400 24.804 19.442 15.146

-0.9 92.627 82.332 70.806 59.334 48.716 39.361 31.404 24.808 19.445 15.149

-0.5 92.627 82.336 70.814 59.349 48.736 39.386 31.431 24.837 19.474 15.177

0 92.628 82.340 70.824 59.366 48.762 39.417 31.466 24.873 19.510 15.211

0.5 92.629 82.344 70.835 59.384 48.787 39.448 31.501 24.909 19.546 15.246

0.9 92.629 82.347 70.843 59.400 48.807 39.473 31.528 24.938 19.575 15.273

0.95 92.629 82.347 70.844 59.401 48.810 39.476 31.532 24.942 19.579 15.279

Appendix 4. Yield (in %) of zero coupon bond under jump diffusion model with student-t copula dependence structure

θ 1 2 3 4 5 6 7 8 9 10

-0.95 11.827 15.024 17.842 20.324 22.513 24.445 26.152 27.665 29.008 30.217

-0.9 11.652 14.860 17.695 20.200 22.413 24.369 26.101 27.637 29.002 30.202

-0.5 11.635 14.799 17.576 20.015 22.160 24.050 25.717 27.192 28.530 29.756

0 11.109 14.317 17.158 19.671 21.894 23.863 25.607 27.154 28.499 29.662

0.5 11.074 14.199 17.017 19.533 21.760 23.731 25.477 27.027 28.406 29.634

0.9 10.962 14.173 16.930 19.319 21.415 23.256 24.879 26.312 27.580 28.707

0.95 10.925 14.046 16.771 19.155 21.244 23.079 24.695 26.122 27.386 28.507

Appendix 5. Yield (in %) of zero coupon bond under jump diffusion model with Gaussian copula dependence structure for years 

to maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 8.074 10.421 12.474 14.295 15.909 17.340 18.608 19.735 20.736 21.629
-0.9 8.074 10.421 12.473 14.294 15.907 17.337 18.604 19.730 20.731 21.623
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-0.5 7.961 10.326 12.348 14.133 15.740 17.164 18.427 19.547 20.543 21.430

0 7.959 10.268 12.317 14.132 15.708 17.120 18.372 19.484 20.471 21.350

0.5 7.956 10.260 12.301 14.107 15.705 17.099 18.328 19.418 20.384 21.252

0.9 7.953 10.250 12.281 14.076 15.663 17.065 18.306 19.406 20.383 21.244

0.95 7.952 10.241 12.263 14.047 15.622 17.014 18.244 19.334 20.301 21.161

Appendix 6. Yield (in %) of zero coupon bond under jump diffusion model with FGM copula dependence structure for years to 

maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 7.960 10.209 12.197 13.940 15.470 16.814 17.996 19.038 19.958 20.773

-0.9 7.960 10.209 12.196 13.939 15.469 16.812 17.994 19.036 19.956 20.771

-0.5 7.960 10.206 12.192 13.933 15.459 16.800 17.979 19.018 19.936 20.749

0 7.959 10.204 12.186 13.924 15.448 16.785 17.961 18.996 19.911 20.721

0.5 7.958 10.201 12.181 13.915 15.436 16.770 17.942 18.975 19.887 20.694

0.9 7.957 10.197 12.176 13.908 15.426 16.757 17.927 18.957 19.867 20.672

0.95 7.957 10.198 12.176 13.908 15.425 16.756 17.922 18.955 19.865 20.670

A2: BOND PRICE AND YIELD AS A FUNCTION OF TENOR AND θ WITH Y ∼ Exp(5,10)

Appendix 7. Prices of zero coupon bond under jump diffusion model with student-t copula dependence structure for years to 

maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 51.019 11.845 1.732 0.188 0.017 0.001 8.80E-05 5.6E-06 3.4E-07 2.0E-08

-0.9 51.030 11.893 1.751 0.192 0.017 0.001 9.4E-05 6.1E-06 3.7E-07 2.2E-08

-0.5 51.275 12.348 1.928 0.228 0.0224 0.002 0.0002 1.1E-05 7.6E-07 5.1E-08

0 51.867 13.089 2.204 0.287 0.0314 0.003 0.0003 2.3E-05 1.8E-06 1.4E-07

0.5 52.791 14.085 2.578 0.372 0.046 0.005 0.0005 4.9E-05 4.4E-06 3.9E-07

0.9 53.883 15.191 3.010 0.478 0.065 0.008 0.0009 9.9E-05 1.0E-05 1.0E-06

0.95 54.065 15.368 3.080 0.496 0.069 0.009 0.001 0.0001 1.1E-05 1.2E-06

Appendix 8. Prices of zero coupon bond under jump diffusion model with Gaussian copula dependence structure for 

years to maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 57.359 15.816 2.736 0.347 0.036 0.003 0.00024 1.7E-05 1.2E-06 7.6E-08

-0.9 57.387 15.862 2.757 0.352 0.036 0.003 0.0003 1.8E-05 1.3E-06 8.2E-08

-0.5 57.669 16.283 2.944 0.396 0.044 0.004 0.0004 2.8E-05 2.1E-06 1.5E-07

0 58.036 16.873 3.215 0.465 0.056 0.006 0.0006 4.9E-05 4.1E-06 3.3E-07

0.5 58.470 17.562 3.541 0.552 0.072 0.008 0.0009 8.7E-05 8.1E-06 7.4E-07
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0.9 58.866 18.195 3.852 0.639 0.09 0.011 0.00130 0.00014 1.4E-05 1.4E-06

0.95 58.87 18.251 3.885 0.650 0.092 0.012 0.00136 0.00015 1.5E-05 1.6E-06

Appendix 9. Prices of zero coupon bond under jump diffusion model with FGM copula dependence structure for years to maturity 

1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 57.797 16.488 3.036 0.419 0.048 0.005 0.0004 3.4E-05 2.7E-06 2.0E-07

-0.9 57.810 16.508 3.045 0.422 0.048 0.005 0.0004 3.5E-05 2.7E-06 2.1E-07

-0.5 57.910 16.669 3.120 0.440 0.051 0.005 0.0005 4.1E-05 3.3E-06 2.5E-07

0 58.036 16.873 3.215 0.465 0.056 0.006 0.001 4.9E-05 4.1E-06 3.3E-07

0.5 58.163 17.079 3.313 0.491 0.060 0.007 0.001 5.9E-05 5.1E-06 4.3E-07

0.9 58.264 17.246 3.394 0.512 0.065 0.007 0.001 6.9E-05 6.2E-06 5.3E-07

0.95 58.277 17.267 3.404 0.515 0.065 0.007 0.001 7.0E-05 6.3E-06 5.5E-07

Appendix 10. Yield (in %) of zero coupon bond under jump diffusion model with student-t copula dependence structure for years 

to maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 96.006 190.56 286.50 380.36 470.04 554.41 633.00 705.74 772.80 834.48

-0.9 95.963 189.97 285.05 377.81 466.23 549.27 626.50 697.90 763.65 824.08

-0.5 95.028 184.58 272.96 357.58 437.05 510.80 578.75 641.07 698.11 750.24

0 92.802 176.40 256.69 332.05 401.77 465.72 524.12 577.28 625.64 669.63

0.5 89.425 166.46 238.52 304.91 365.51 420.53 470.36 515.45 556.23 593.17

0.9 85.587 156.57 221.48 280.36 333.49 381.32 424.34 463.06 499.34 530.85

0.95 84.961 155.09 219.01 276.86 328.98 375.85 417.93 456.18 490.39 521.65

Appendix 14. Yield (in %) of zero coupon bond under jump diffusion model with Gaussian copula dependence structure for years 

to maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 74.340 151.45 231.86 312.16 390.11 464.40 534.33 599.63 660.27 716.40

-0.9 74.255 151.09 231.02 310.69 387.91 461.40 530.51 594.97 654.80 710.13

-0.5 73.405 147.82 223.88 298.54 370.03 437.40 500.23 558.45 612.17 661.62

0 72.306 143.45 214.50 282.99 347.64 407.88 463.55 514.75 561.72 604.73

0.5 71.029 138.62 204.52 266.92 325.00 378.54 427.61 472.44 513.32 550.59

0.9 69.880 134.44 196.11 253.64 306.59 354.99 399.04 439.07 475.41 508.42

0.95 69.866 134.08 195.26 252.22 304.58 352.36 395.83 435.29 471.11 503.63
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Appendix 12. Yield (in %) of zero coupon bond under jump diffusion model with FGM copula dependence structure for years to 

maturity 1-10
θ 1 2 3 4 5 6 7 8 9 10

-0.95 73.019 146.27 220.54 292.99 362.01 426.79 487.01 542.67 593.91 641.00

-0.9 72.982 146.12 220.22 292.46 361.24 425.78 485.75 541.17 592.18 639.05

-0.5 72.681 144.93 217.67 288.22 355.15 417.74 475.78 529.29 578.47 623.59

0 72.306 143.45 214.50 282.99 347.64 407.88 463.55 514.75 561.72 604.73

0.5 71.931 141.97 211.36 277.83 340.26 398.20 451.58 500.55 545.37 586.35

0.9 71.632 140.80 208.88 273.75 334.44 390.59 442.19 489.43 532.59 572.00

0.95 71.595 140.65 208.57 273.25 333.72 389.64 441.02 488.05 531.01 570.23
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